Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpfiiin Structured version   Visualization version   Unicode version

Theorem cmpfiiin 37260
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
cmpfiiin.x  |-  X  = 
U. J
cmpfiiin.j  |-  ( ph  ->  J  e.  Comp )
cmpfiiin.s  |-  ( (
ph  /\  k  e.  I )  ->  S  e.  ( Clsd `  J
) )
cmpfiiin.z  |-  ( (
ph  /\  ( l  C_  I  /\  l  e. 
Fin ) )  -> 
( X  i^i  |^|_ k  e.  l  S
)  =/=  (/) )
Assertion
Ref Expression
cmpfiiin  |-  ( ph  ->  ( X  i^i  |^|_ k  e.  I  S
)  =/=  (/) )
Distinct variable groups:    ph, k, l   
k, I, l    k, J, l    S, l    k, X, l
Allowed substitution hint:    S( k)

Proof of Theorem cmpfiiin
StepHypRef Expression
1 cmpfiiin.j . . . . 5  |-  ( ph  ->  J  e.  Comp )
2 cmptop 21198 . . . . 5  |-  ( J  e.  Comp  ->  J  e. 
Top )
31, 2syl 17 . . . 4  |-  ( ph  ->  J  e.  Top )
4 cmpfiiin.x . . . . 5  |-  X  = 
U. J
54topcld 20839 . . . 4  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
63, 5syl 17 . . 3  |-  ( ph  ->  X  e.  ( Clsd `  J ) )
7 cmpfiiin.s . . . . 5  |-  ( (
ph  /\  k  e.  I )  ->  S  e.  ( Clsd `  J
) )
84cldss 20833 . . . . 5  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  X
)
97, 8syl 17 . . . 4  |-  ( (
ph  /\  k  e.  I )  ->  S  C_  X )
109ralrimiva 2966 . . 3  |-  ( ph  ->  A. k  e.  I  S  C_  X )
11 riinint 5382 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  A. k  e.  I  S  C_  X )  ->  ( X  i^i  |^|_ k  e.  I  S )  =  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )
126, 10, 11syl2anc 693 . 2  |-  ( ph  ->  ( X  i^i  |^|_ k  e.  I  S
)  =  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )
136snssd 4340 . . . 4  |-  ( ph  ->  { X }  C_  ( Clsd `  J )
)
14 eqid 2622 . . . . . 6  |-  ( k  e.  I  |->  S )  =  ( k  e.  I  |->  S )
157, 14fmptd 6385 . . . . 5  |-  ( ph  ->  ( k  e.  I  |->  S ) : I --> ( Clsd `  J
) )
16 frn 6053 . . . . 5  |-  ( ( k  e.  I  |->  S ) : I --> ( Clsd `  J )  ->  ran  ( k  e.  I  |->  S )  C_  ( Clsd `  J ) )
1715, 16syl 17 . . . 4  |-  ( ph  ->  ran  ( k  e.  I  |->  S )  C_  ( Clsd `  J )
)
1813, 17unssd 3789 . . 3  |-  ( ph  ->  ( { X }  u.  ran  ( k  e.  I  |->  S ) ) 
C_  ( Clsd `  J
) )
19 elin 3796 . . . . . . 7  |-  ( l  e.  ( ~P I  i^i  Fin )  <->  ( l  e.  ~P I  /\  l  e.  Fin ) )
20 elpwi 4168 . . . . . . . 8  |-  ( l  e.  ~P I  -> 
l  C_  I )
2120anim1i 592 . . . . . . 7  |-  ( ( l  e.  ~P I  /\  l  e.  Fin )  ->  ( l  C_  I  /\  l  e.  Fin ) )
2219, 21sylbi 207 . . . . . 6  |-  ( l  e.  ( ~P I  i^i  Fin )  ->  (
l  C_  I  /\  l  e.  Fin )
)
23 cmpfiiin.z . . . . . . 7  |-  ( (
ph  /\  ( l  C_  I  /\  l  e. 
Fin ) )  -> 
( X  i^i  |^|_ k  e.  l  S
)  =/=  (/) )
24 nesym 2850 . . . . . . 7  |-  ( ( X  i^i  |^|_ k  e.  l  S )  =/=  (/)  <->  -.  (/)  =  ( X  i^i  |^|_ k  e.  l  S )
)
2523, 24sylib 208 . . . . . 6  |-  ( (
ph  /\  ( l  C_  I  /\  l  e. 
Fin ) )  ->  -.  (/)  =  ( X  i^i  |^|_ k  e.  l  S ) )
2622, 25sylan2 491 . . . . 5  |-  ( (
ph  /\  l  e.  ( ~P I  i^i  Fin ) )  ->  -.  (/)  =  ( X  i^i  |^|_ k  e.  l  S ) )
2726nrexdv 3001 . . . 4  |-  ( ph  ->  -.  E. l  e.  ( ~P I  i^i 
Fin ) (/)  =  ( X  i^i  |^|_ k  e.  l  S )
)
28 elrfirn2 37259 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  A. k  e.  I  S  C_  X )  ->  ( (/) 
e.  ( fi `  ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )  <->  E. l  e.  ( ~P I  i^i  Fin ) (/)  =  ( X  i^i  |^|_ k  e.  l  S ) ) )
296, 10, 28syl2anc 693 . . . 4  |-  ( ph  ->  ( (/)  e.  ( fi `  ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )  <->  E. l  e.  ( ~P I  i^i 
Fin ) (/)  =  ( X  i^i  |^|_ k  e.  l  S )
) )
3027, 29mtbird 315 . . 3  |-  ( ph  ->  -.  (/)  e.  ( fi
`  ( { X }  u.  ran  ( k  e.  I  |->  S ) ) ) )
31 cmpfii 21212 . . 3  |-  ( ( J  e.  Comp  /\  ( { X }  u.  ran  ( k  e.  I  |->  S ) )  C_  ( Clsd `  J )  /\  -.  (/)  e.  ( fi
`  ( { X }  u.  ran  ( k  e.  I  |->  S ) ) ) )  ->  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) )  =/=  (/) )
321, 18, 30, 31syl3anc 1326 . 2  |-  ( ph  ->  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) )  =/=  (/) )
3312, 32eqnetrd 2861 1  |-  ( ph  ->  ( X  i^i  |^|_ k  e.  I  S
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   |^|cint 4475   |^|_ciin 4521    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888   Fincfn 7955   ficfi 8316   Topctop 20698   Clsdccld 20820   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-top 20699  df-cld 20823  df-cmp 21190
This theorem is referenced by:  kelac1  37633
  Copyright terms: Public domain W3C validator