Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl1cn Structured version   Visualization version   Unicode version

Theorem pl1cn 30001
Description: A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.)
Hypotheses
Ref Expression
pl1cn.p  |-  P  =  (Poly1 `  R )
pl1cn.e  |-  E  =  (eval1 `  R )
pl1cn.b  |-  B  =  ( Base `  P
)
pl1cn.k  |-  K  =  ( Base `  R
)
pl1cn.j  |-  J  =  ( TopOpen `  R )
pl1cn.1  |-  ( ph  ->  R  e.  CRing )
pl1cn.2  |-  ( ph  ->  R  e.  TopRing )
pl1cn.3  |-  ( ph  ->  F  e.  B )
Assertion
Ref Expression
pl1cn  |-  ( ph  ->  ( E `  F
)  e.  ( J  Cn  J ) )

Proof of Theorem pl1cn
Dummy variables  h  f  g  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pl1cn.k . 2  |-  K  =  ( Base `  R
)
2 eqid 2622 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
3 eqid 2622 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
4 eqid 2622 . 2  |-  ran  (eval1 `  R )  =  ran  (eval1 `  R )
5 fvex 6201 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
61, 5eqeltri 2697 . . . . . . . 8  |-  K  e. 
_V
76a1i 11 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  K  e.  _V )
8 fvexd 6203 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  /\  x  e.  K )  ->  (
f `  x )  e.  _V )
9 fvexd 6203 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  /\  x  e.  K )  ->  (
g `  x )  e.  _V )
10 simp1 1061 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  ph )
11 eqid 2622 . . . . . . . . . . 11  |-  U. J  =  U. J
1211, 11cnf 21050 . . . . . . . . . 10  |-  ( f  e.  ( J  Cn  J )  ->  f : U. J --> U. J
)
13 ffn 6045 . . . . . . . . . 10  |-  ( f : U. J --> U. J  ->  f  Fn  U. J
)
1412, 13syl 17 . . . . . . . . 9  |-  ( f  e.  ( J  Cn  J )  ->  f  Fn  U. J )
15143ad2ant2 1083 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  f  Fn  U. J )
16 dffn5 6241 . . . . . . . . . 10  |-  ( f  Fn  K  <->  f  =  ( x  e.  K  |->  ( f `  x
) ) )
17 pl1cn.2 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  TopRing )
18 trgtgp 21971 . . . . . . . . . . . . 13  |-  ( R  e.  TopRing  ->  R  e.  TopGrp )
19 pl1cn.j . . . . . . . . . . . . . 14  |-  J  =  ( TopOpen `  R )
2019, 1tgptopon 21886 . . . . . . . . . . . . 13  |-  ( R  e.  TopGrp  ->  J  e.  (TopOn `  K ) )
2117, 18, 203syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  (TopOn `  K ) )
22 toponuni 20719 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  K
)  ->  K  =  U. J )
2321, 22syl 17 . . . . . . . . . . 11  |-  ( ph  ->  K  =  U. J
)
2423fneq2d 5982 . . . . . . . . . 10  |-  ( ph  ->  ( f  Fn  K  <->  f  Fn  U. J ) )
2516, 24syl5rbbr 275 . . . . . . . . 9  |-  ( ph  ->  ( f  Fn  U. J 
<->  f  =  ( x  e.  K  |->  ( f `
 x ) ) ) )
2625biimpa 501 . . . . . . . 8  |-  ( (
ph  /\  f  Fn  U. J )  ->  f  =  ( x  e.  K  |->  ( f `  x ) ) )
2710, 15, 26syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  f  =  ( x  e.  K  |->  ( f `  x ) ) )
2811, 11cnf 21050 . . . . . . . . . 10  |-  ( g  e.  ( J  Cn  J )  ->  g : U. J --> U. J
)
29 ffn 6045 . . . . . . . . . 10  |-  ( g : U. J --> U. J  ->  g  Fn  U. J
)
3028, 29syl 17 . . . . . . . . 9  |-  ( g  e.  ( J  Cn  J )  ->  g  Fn  U. J )
31303ad2ant3 1084 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  g  Fn  U. J )
32 dffn5 6241 . . . . . . . . . 10  |-  ( g  Fn  K  <->  g  =  ( x  e.  K  |->  ( g `  x
) ) )
3323fneq2d 5982 . . . . . . . . . 10  |-  ( ph  ->  ( g  Fn  K  <->  g  Fn  U. J ) )
3432, 33syl5rbbr 275 . . . . . . . . 9  |-  ( ph  ->  ( g  Fn  U. J 
<->  g  =  ( x  e.  K  |->  ( g `
 x ) ) ) )
3534biimpa 501 . . . . . . . 8  |-  ( (
ph  /\  g  Fn  U. J )  ->  g  =  ( x  e.  K  |->  ( g `  x ) ) )
3610, 31, 35syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  g  =  ( x  e.  K  |->  ( g `  x ) ) )
377, 8, 9, 27, 36offval2 6914 . . . . . 6  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
f  oF ( +g  `  R ) g )  =  ( x  e.  K  |->  ( ( f `  x
) ( +g  `  R
) ( g `  x ) ) ) )
38213ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  J  e.  (TopOn `  K )
)
39 simp2 1062 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  f  e.  ( J  Cn  J
) )
4027, 39eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
x  e.  K  |->  ( f `  x ) )  e.  ( J  Cn  J ) )
41 simp3 1063 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  g  e.  ( J  Cn  J
) )
4236, 41eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
x  e.  K  |->  ( g `  x ) )  e.  ( J  Cn  J ) )
43 eqid 2622 . . . . . . . . . 10  |-  ( +f `  R )  =  ( +f `  R )
441, 2, 43plusffval 17247 . . . . . . . . 9  |-  ( +f `  R )  =  ( y  e.  K ,  z  e.  K  |->  ( y ( +g  `  R ) z ) )
4519, 43tgpcn 21888 . . . . . . . . . 10  |-  ( R  e.  TopGrp  ->  ( +f `  R )  e.  ( ( J  tX  J
)  Cn  J ) )
4617, 18, 453syl 18 . . . . . . . . 9  |-  ( ph  ->  ( +f `  R )  e.  ( ( J  tX  J
)  Cn  J ) )
4744, 46syl5eqelr 2706 . . . . . . . 8  |-  ( ph  ->  ( y  e.  K ,  z  e.  K  |->  ( y ( +g  `  R ) z ) )  e.  ( ( J  tX  J )  Cn  J ) )
48473ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
y  e.  K , 
z  e.  K  |->  ( y ( +g  `  R
) z ) )  e.  ( ( J 
tX  J )  Cn  J ) )
49 oveq12 6659 . . . . . . 7  |-  ( ( y  =  ( f `
 x )  /\  z  =  ( g `  x ) )  -> 
( y ( +g  `  R ) z )  =  ( ( f `
 x ) ( +g  `  R ) ( g `  x
) ) )
5038, 40, 42, 38, 38, 48, 49cnmpt12 21470 . . . . . 6  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
x  e.  K  |->  ( ( f `  x
) ( +g  `  R
) ( g `  x ) ) )  e.  ( J  Cn  J ) )
5137, 50eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
f  oF ( +g  `  R ) g )  e.  ( J  Cn  J ) )
52513adant2l 1320 . . . 4  |-  ( (
ph  /\  ( f  e.  ran  (eval1 `  R )  /\  f  e.  ( J  Cn  J ) )  /\  g  e.  ( J  Cn  J ) )  -> 
( f  oF ( +g  `  R
) g )  e.  ( J  Cn  J
) )
53523adant3l 1322 . . 3  |-  ( (
ph  /\  ( f  e.  ran  (eval1 `  R )  /\  f  e.  ( J  Cn  J ) )  /\  ( g  e.  ran  (eval1 `  R )  /\  g  e.  ( J  Cn  J
) ) )  -> 
( f  oF ( +g  `  R
) g )  e.  ( J  Cn  J
) )
54533expb 1266 . 2  |-  ( (
ph  /\  ( (
f  e.  ran  (eval1 `  R )  /\  f  e.  ( J  Cn  J
) )  /\  (
g  e.  ran  (eval1 `  R )  /\  g  e.  ( J  Cn  J
) ) ) )  ->  ( f  oF ( +g  `  R
) g )  e.  ( J  Cn  J
) )
557, 8, 9, 27, 36offval2 6914 . . . . . 6  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
f  oF ( .r `  R ) g )  =  ( x  e.  K  |->  ( ( f `  x
) ( .r `  R ) ( g `
 x ) ) ) )
56 eqid 2622 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
5756, 1mgpbas 18495 . . . . . . . . . 10  |-  K  =  ( Base `  (mulGrp `  R ) )
5856, 3mgpplusg 18493 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) )
59 eqid 2622 . . . . . . . . . 10  |-  ( +f `  (mulGrp `  R ) )  =  ( +f `  (mulGrp `  R ) )
6057, 58, 59plusffval 17247 . . . . . . . . 9  |-  ( +f `  (mulGrp `  R ) )  =  ( y  e.  K ,  z  e.  K  |->  ( y ( .r
`  R ) z ) )
6119, 59mulrcn 21982 . . . . . . . . . 10  |-  ( R  e.  TopRing  ->  ( +f `  (mulGrp `  R )
)  e.  ( ( J  tX  J )  Cn  J ) )
6217, 61syl 17 . . . . . . . . 9  |-  ( ph  ->  ( +f `  (mulGrp `  R ) )  e.  ( ( J 
tX  J )  Cn  J ) )
6360, 62syl5eqelr 2706 . . . . . . . 8  |-  ( ph  ->  ( y  e.  K ,  z  e.  K  |->  ( y ( .r
`  R ) z ) )  e.  ( ( J  tX  J
)  Cn  J ) )
64633ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
y  e.  K , 
z  e.  K  |->  ( y ( .r `  R ) z ) )  e.  ( ( J  tX  J )  Cn  J ) )
65 oveq12 6659 . . . . . . 7  |-  ( ( y  =  ( f `
 x )  /\  z  =  ( g `  x ) )  -> 
( y ( .r
`  R ) z )  =  ( ( f `  x ) ( .r `  R
) ( g `  x ) ) )
6638, 40, 42, 38, 38, 64, 65cnmpt12 21470 . . . . . 6  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
x  e.  K  |->  ( ( f `  x
) ( .r `  R ) ( g `
 x ) ) )  e.  ( J  Cn  J ) )
6755, 66eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  f  e.  ( J  Cn  J
)  /\  g  e.  ( J  Cn  J
) )  ->  (
f  oF ( .r `  R ) g )  e.  ( J  Cn  J ) )
68673adant2l 1320 . . . 4  |-  ( (
ph  /\  ( f  e.  ran  (eval1 `  R )  /\  f  e.  ( J  Cn  J ) )  /\  g  e.  ( J  Cn  J ) )  -> 
( f  oF ( .r `  R
) g )  e.  ( J  Cn  J
) )
69683adant3l 1322 . . 3  |-  ( (
ph  /\  ( f  e.  ran  (eval1 `  R )  /\  f  e.  ( J  Cn  J ) )  /\  ( g  e.  ran  (eval1 `  R )  /\  g  e.  ( J  Cn  J
) ) )  -> 
( f  oF ( .r `  R
) g )  e.  ( J  Cn  J
) )
70693expb 1266 . 2  |-  ( (
ph  /\  ( (
f  e.  ran  (eval1 `  R )  /\  f  e.  ( J  Cn  J
) )  /\  (
g  e.  ran  (eval1 `  R )  /\  g  e.  ( J  Cn  J
) ) ) )  ->  ( f  oF ( .r `  R ) g )  e.  ( J  Cn  J ) )
71 eleq1 2689 . 2  |-  ( h  =  ( K  X.  { f } )  ->  ( h  e.  ( J  Cn  J
)  <->  ( K  X.  { f } )  e.  ( J  Cn  J ) ) )
72 eleq1 2689 . 2  |-  ( h  =  (  _I  |`  K )  ->  ( h  e.  ( J  Cn  J
)  <->  (  _I  |`  K )  e.  ( J  Cn  J ) ) )
73 eleq1 2689 . 2  |-  ( h  =  f  ->  (
h  e.  ( J  Cn  J )  <->  f  e.  ( J  Cn  J
) ) )
74 eleq1 2689 . 2  |-  ( h  =  g  ->  (
h  e.  ( J  Cn  J )  <->  g  e.  ( J  Cn  J
) ) )
75 eleq1 2689 . 2  |-  ( h  =  ( f  oF ( +g  `  R
) g )  -> 
( h  e.  ( J  Cn  J )  <-> 
( f  oF ( +g  `  R
) g )  e.  ( J  Cn  J
) ) )
76 eleq1 2689 . 2  |-  ( h  =  ( f  oF ( .r `  R ) g )  ->  ( h  e.  ( J  Cn  J
)  <->  ( f  oF ( .r `  R ) g )  e.  ( J  Cn  J ) ) )
77 eleq1 2689 . 2  |-  ( h  =  ( E `  F )  ->  (
h  e.  ( J  Cn  J )  <->  ( E `  F )  e.  ( J  Cn  J ) ) )
7821adantr 481 . . 3  |-  ( (
ph  /\  f  e.  K )  ->  J  e.  (TopOn `  K )
)
79 simpr 477 . . 3  |-  ( (
ph  /\  f  e.  K )  ->  f  e.  K )
80 cnconst2 21087 . . 3  |-  ( ( J  e.  (TopOn `  K )  /\  J  e.  (TopOn `  K )  /\  f  e.  K
)  ->  ( K  X.  { f } )  e.  ( J  Cn  J ) )
8178, 78, 79, 80syl3anc 1326 . 2  |-  ( (
ph  /\  f  e.  K )  ->  ( K  X.  { f } )  e.  ( J  Cn  J ) )
82 idcn 21061 . . 3  |-  ( J  e.  (TopOn `  K
)  ->  (  _I  |`  K )  e.  ( J  Cn  J ) )
8321, 82syl 17 . 2  |-  ( ph  ->  (  _I  |`  K )  e.  ( J  Cn  J ) )
84 pl1cn.1 . . . . 5  |-  ( ph  ->  R  e.  CRing )
85 pl1cn.e . . . . . . 7  |-  E  =  (eval1 `  R )
86 pl1cn.p . . . . . . 7  |-  P  =  (Poly1 `  R )
87 eqid 2622 . . . . . . 7  |-  ( R  ^s  K )  =  ( R  ^s  K )
8885, 86, 87, 1evl1rhm 19696 . . . . . 6  |-  ( R  e.  CRing  ->  E  e.  ( P RingHom  ( R  ^s  K
) ) )
89 pl1cn.b . . . . . . 7  |-  B  =  ( Base `  P
)
90 eqid 2622 . . . . . . 7  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
9189, 90rhmf 18726 . . . . . 6  |-  ( E  e.  ( P RingHom  ( R  ^s  K ) )  ->  E : B --> ( Base `  ( R  ^s  K ) ) )
92 ffn 6045 . . . . . 6  |-  ( E : B --> ( Base `  ( R  ^s  K ) )  ->  E  Fn  B )
93 dffn3 6054 . . . . . . 7  |-  ( E  Fn  B  <->  E : B
--> ran  E )
9493biimpi 206 . . . . . 6  |-  ( E  Fn  B  ->  E : B --> ran  E )
9588, 91, 92, 944syl 19 . . . . 5  |-  ( R  e.  CRing  ->  E : B
--> ran  E )
9684, 95syl 17 . . . 4  |-  ( ph  ->  E : B --> ran  E
)
97 pl1cn.3 . . . 4  |-  ( ph  ->  F  e.  B )
9896, 97ffvelrnd 6360 . . 3  |-  ( ph  ->  ( E `  F
)  e.  ran  E
)
9985rneqi 5352 . . 3  |-  ran  E  =  ran  (eval1 `  R )
10098, 99syl6eleq 2711 . 2  |-  ( ph  ->  ( E `  F
)  e.  ran  (eval1 `  R ) )
1011, 2, 3, 4, 54, 70, 71, 72, 73, 74, 75, 76, 77, 81, 83, 100pf1ind 19719 1  |-  ( ph  ->  ( E `  F
)  e.  ( J  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   U.cuni 4436    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   TopOpenctopn 16082    ^s cpws 16107   +fcplusf 17239  mulGrpcmgp 18489   CRingccrg 18548   RingHom crh 18712  Poly1cpl1 19547  eval1ce1 19679  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   TopGrpctgp 21875   TopRingctrg 21959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-ply1 19552  df-evl1 19681  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-tmd 21876  df-tgp 21877  df-trg 21963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator