MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif20el Structured version   Visualization version   Unicode version

Theorem dif20el 7585
Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
dif20el  |-  ( A  e.  ( On  \  2o )  ->  (/)  e.  A
)

Proof of Theorem dif20el
StepHypRef Expression
1 ondif2 7582 . . 3  |-  ( A  e.  ( On  \  2o )  <->  ( A  e.  On  /\  1o  e.  A ) )
21simprbi 480 . 2  |-  ( A  e.  ( On  \  2o )  ->  1o  e.  A )
3 0lt1o 7584 . . 3  |-  (/)  e.  1o
4 eldifi 3732 . . . 4  |-  ( A  e.  ( On  \  2o )  ->  A  e.  On )
5 ontr1 5771 . . . 4  |-  ( A  e.  On  ->  (
( (/)  e.  1o  /\  1o  e.  A )  ->  (/) 
e.  A ) )
64, 5syl 17 . . 3  |-  ( A  e.  ( On  \  2o )  ->  ( (
(/)  e.  1o  /\  1o  e.  A )  ->  (/)  e.  A
) )
73, 6mpani 712 . 2  |-  ( A  e.  ( On  \  2o )  ->  ( 1o  e.  A  ->  (/)  e.  A
) )
82, 7mpd 15 1  |-  ( A  e.  ( On  \  2o )  ->  (/)  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    \ cdif 3571   (/)c0 3915   Oncon0 5723   1oc1o 7553   2oc2o 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-1o 7560  df-2o 7561
This theorem is referenced by:  oeordi  7667  oeworde  7673  oelimcl  7680  oeeulem  7681  oeeui  7682
  Copyright terms: Public domain W3C validator