MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordi Structured version   Visualization version   Unicode version

Theorem oeordi 7667
Description: Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeordi  |-  ( ( B  e.  On  /\  C  e.  ( On  \  2o ) )  -> 
( A  e.  B  ->  ( C  ^o  A
)  e.  ( C  ^o  B ) ) )

Proof of Theorem oeordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5  |-  ( x  =  suc  A  -> 
( C  ^o  x
)  =  ( C  ^o  suc  A ) )
21eleq2d 2687 . . . 4  |-  ( x  =  suc  A  -> 
( ( C  ^o  A )  e.  ( C  ^o  x )  <-> 
( C  ^o  A
)  e.  ( C  ^o  suc  A ) ) )
32imbi2d 330 . . 3  |-  ( x  =  suc  A  -> 
( ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) )  <->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A
) ) ) )
4 oveq2 6658 . . . . 5  |-  ( x  =  y  ->  ( C  ^o  x )  =  ( C  ^o  y
) )
54eleq2d 2687 . . . 4  |-  ( x  =  y  ->  (
( C  ^o  A
)  e.  ( C  ^o  x )  <->  ( C  ^o  A )  e.  ( C  ^o  y ) ) )
65imbi2d 330 . . 3  |-  ( x  =  y  ->  (
( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) )  <->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) ) )
7 oveq2 6658 . . . . 5  |-  ( x  =  suc  y  -> 
( C  ^o  x
)  =  ( C  ^o  suc  y ) )
87eleq2d 2687 . . . 4  |-  ( x  =  suc  y  -> 
( ( C  ^o  A )  e.  ( C  ^o  x )  <-> 
( C  ^o  A
)  e.  ( C  ^o  suc  y ) ) )
98imbi2d 330 . . 3  |-  ( x  =  suc  y  -> 
( ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) )  <->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y
) ) ) )
10 oveq2 6658 . . . . 5  |-  ( x  =  B  ->  ( C  ^o  x )  =  ( C  ^o  B
) )
1110eleq2d 2687 . . . 4  |-  ( x  =  B  ->  (
( C  ^o  A
)  e.  ( C  ^o  x )  <->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )
1211imbi2d 330 . . 3  |-  ( x  =  B  ->  (
( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) )  <->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  B ) ) ) )
13 eldifi 3732 . . . . . . . 8  |-  ( C  e.  ( On  \  2o )  ->  C  e.  On )
14 oecl 7617 . . . . . . . 8  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  On )
1513, 14sylan 488 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  On )
16 om1 7622 . . . . . . 7  |-  ( ( C  ^o  A )  e.  On  ->  (
( C  ^o  A
)  .o  1o )  =  ( C  ^o  A ) )
1715, 16syl 17 . . . . . 6  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( ( C  ^o  A )  .o  1o )  =  ( C  ^o  A ) )
18 ondif2 7582 . . . . . . . . 9  |-  ( C  e.  ( On  \  2o )  <->  ( C  e.  On  /\  1o  e.  C ) )
1918simprbi 480 . . . . . . . 8  |-  ( C  e.  ( On  \  2o )  ->  1o  e.  C )
2019adantr 481 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  1o  e.  C )
2113adantr 481 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  C  e.  On )
22 simpr 477 . . . . . . . . 9  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  A  e.  On )
23 dif20el 7585 . . . . . . . . . 10  |-  ( C  e.  ( On  \  2o )  ->  (/)  e.  C
)
2423adantr 481 . . . . . . . . 9  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  -> 
(/)  e.  C )
25 oen0 7666 . . . . . . . . 9  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  (/)  e.  ( C  ^o  A ) )
2621, 22, 24, 25syl21anc 1325 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  -> 
(/)  e.  ( C  ^o  A ) )
27 omordi 7646 . . . . . . . 8  |-  ( ( ( C  e.  On  /\  ( C  ^o  A
)  e.  On )  /\  (/)  e.  ( C  ^o  A ) )  ->  ( 1o  e.  C  ->  ( ( C  ^o  A )  .o  1o )  e.  ( ( C  ^o  A
)  .o  C ) ) )
2821, 15, 26, 27syl21anc 1325 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( 1o  e.  C  ->  ( ( C  ^o  A )  .o  1o )  e.  ( ( C  ^o  A )  .o  C ) ) )
2920, 28mpd 15 . . . . . 6  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( ( C  ^o  A )  .o  1o )  e.  ( ( C  ^o  A )  .o  C ) )
3017, 29eqeltrrd 2702 . . . . 5  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  ( ( C  ^o  A )  .o  C ) )
31 oesuc 7607 . . . . . 6  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  ^o  suc  A )  =  ( ( C  ^o  A )  .o  C ) )
3213, 31sylan 488 . . . . 5  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( C  ^o  suc  A )  =  ( ( C  ^o  A )  .o  C ) )
3330, 32eleqtrrd 2704 . . . 4  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  ( C  ^o  suc  A ) )
3433expcom 451 . . 3  |-  ( A  e.  On  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A ) ) )
35 oecl 7617 . . . . . . . . . . 11  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  ^o  y
)  e.  On )
3613, 35sylan 488 . . . . . . . . . 10  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  y
)  e.  On )
37 om1 7622 . . . . . . . . . 10  |-  ( ( C  ^o  y )  e.  On  ->  (
( C  ^o  y
)  .o  1o )  =  ( C  ^o  y ) )
3836, 37syl 17 . . . . . . . . 9  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( ( C  ^o  y )  .o  1o )  =  ( C  ^o  y ) )
3919adantr 481 . . . . . . . . . 10  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  1o  e.  C )
4013adantr 481 . . . . . . . . . . 11  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  C  e.  On )
41 simpr 477 . . . . . . . . . . . 12  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  y  e.  On )
4223adantr 481 . . . . . . . . . . . 12  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  -> 
(/)  e.  C )
43 oen0 7666 . . . . . . . . . . . 12  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  (/)  e.  C )  ->  (/)  e.  ( C  ^o  y ) )
4440, 41, 42, 43syl21anc 1325 . . . . . . . . . . 11  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  -> 
(/)  e.  ( C  ^o  y ) )
45 omordi 7646 . . . . . . . . . . 11  |-  ( ( ( C  e.  On  /\  ( C  ^o  y
)  e.  On )  /\  (/)  e.  ( C  ^o  y ) )  ->  ( 1o  e.  C  ->  ( ( C  ^o  y )  .o  1o )  e.  ( ( C  ^o  y
)  .o  C ) ) )
4640, 36, 44, 45syl21anc 1325 . . . . . . . . . 10  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( 1o  e.  C  ->  ( ( C  ^o  y )  .o  1o )  e.  ( ( C  ^o  y )  .o  C ) ) )
4739, 46mpd 15 . . . . . . . . 9  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( ( C  ^o  y )  .o  1o )  e.  ( ( C  ^o  y )  .o  C ) )
4838, 47eqeltrrd 2702 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  y
)  e.  ( ( C  ^o  y )  .o  C ) )
49 oesuc 7607 . . . . . . . . 9  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  ^o  suc  y )  =  ( ( C  ^o  y
)  .o  C ) )
5013, 49sylan 488 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  suc  y )  =  ( ( C  ^o  y
)  .o  C ) )
5148, 50eleqtrrd 2704 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  y
)  e.  ( C  ^o  suc  y ) )
52 suceloni 7013 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
53 oecl 7617 . . . . . . . . 9  |-  ( ( C  e.  On  /\  suc  y  e.  On )  ->  ( C  ^o  suc  y )  e.  On )
5413, 52, 53syl2an 494 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  suc  y )  e.  On )
55 ontr1 5771 . . . . . . . 8  |-  ( ( C  ^o  suc  y
)  e.  On  ->  ( ( ( C  ^o  A )  e.  ( C  ^o  y )  /\  ( C  ^o  y )  e.  ( C  ^o  suc  y
) )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y ) ) )
5654, 55syl 17 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( ( ( C  ^o  A )  e.  ( C  ^o  y
)  /\  ( C  ^o  y )  e.  ( C  ^o  suc  y
) )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y ) ) )
5751, 56mpan2d 710 . . . . . 6  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( ( C  ^o  A )  e.  ( C  ^o  y )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y
) ) )
5857expcom 451 . . . . 5  |-  ( y  e.  On  ->  ( C  e.  ( On  \  2o )  ->  (
( C  ^o  A
)  e.  ( C  ^o  y )  -> 
( C  ^o  A
)  e.  ( C  ^o  suc  y ) ) ) )
5958adantr 481 . . . 4  |-  ( ( y  e.  On  /\  A  e.  y )  ->  ( C  e.  ( On  \  2o )  ->  ( ( C  ^o  A )  e.  ( C  ^o  y
)  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y
) ) ) )
6059a2d 29 . . 3  |-  ( ( y  e.  On  /\  A  e.  y )  ->  ( ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y
) ) ) )
61 bi2.04 376 . . . . . 6  |-  ( ( A  e.  y  -> 
( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) )  <->  ( C  e.  ( On  \  2o )  ->  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) ) )
6261ralbii 2980 . . . . 5  |-  ( A. y  e.  x  ( A  e.  y  ->  ( C  e.  ( On 
\  2o )  -> 
( C  ^o  A
)  e.  ( C  ^o  y ) ) )  <->  A. y  e.  x  ( C  e.  ( On  \  2o )  -> 
( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) ) )
63 r19.21v 2960 . . . . 5  |-  ( A. y  e.  x  ( C  e.  ( On  \  2o )  ->  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) )  <-> 
( C  e.  ( On  \  2o )  ->  A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) ) ) )
6462, 63bitri 264 . . . 4  |-  ( A. y  e.  x  ( A  e.  y  ->  ( C  e.  ( On 
\  2o )  -> 
( C  ^o  A
)  e.  ( C  ^o  y ) ) )  <->  ( C  e.  ( On  \  2o )  ->  A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) ) ) )
65 limsuc 7049 . . . . . . . . . 10  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
6665biimpa 501 . . . . . . . . 9  |-  ( ( Lim  x  /\  A  e.  x )  ->  suc  A  e.  x )
67 elex 3212 . . . . . . . . . . . . 13  |-  ( suc 
A  e.  x  ->  suc  A  e.  _V )
68 sucexb 7009 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
69 sucidg 5803 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  A  e.  suc  A )
7068, 69sylbir 225 . . . . . . . . . . . . 13  |-  ( suc 
A  e.  _V  ->  A  e.  suc  A )
7167, 70syl 17 . . . . . . . . . . . 12  |-  ( suc 
A  e.  x  ->  A  e.  suc  A )
72 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( y  =  suc  A  -> 
( A  e.  y  <-> 
A  e.  suc  A
) )
73 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( y  =  suc  A  -> 
( C  ^o  y
)  =  ( C  ^o  suc  A ) )
7473eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( y  =  suc  A  -> 
( ( C  ^o  A )  e.  ( C  ^o  y )  <-> 
( C  ^o  A
)  e.  ( C  ^o  suc  A ) ) )
7572, 74imbi12d 334 . . . . . . . . . . . . 13  |-  ( y  =  suc  A  -> 
( ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  <->  ( A  e. 
suc  A  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A ) ) ) )
7675rspcv 3305 . . . . . . . . . . . 12  |-  ( suc 
A  e.  x  -> 
( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( A  e.  suc  A  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A ) ) ) )
7771, 76mpid 44 . . . . . . . . . . 11  |-  ( suc 
A  e.  x  -> 
( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A
) ) )
7877anc2li 580 . . . . . . . . . 10  |-  ( suc 
A  e.  x  -> 
( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( suc  A  e.  x  /\  ( C  ^o  A )  e.  ( C  ^o  suc  A ) ) ) )
7973eliuni 4526 . . . . . . . . . 10  |-  ( ( suc  A  e.  x  /\  ( C  ^o  A
)  e.  ( C  ^o  suc  A ) )  ->  ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y ) )
8078, 79syl6 35 . . . . . . . . 9  |-  ( suc 
A  e.  x  -> 
( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y ) ) )
8166, 80syl 17 . . . . . . . 8  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) )  ->  ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y ) ) )
8281adantr 481 . . . . . . 7  |-  ( ( ( Lim  x  /\  A  e.  x )  /\  C  e.  ( On  \  2o ) )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y
) )  ->  ( C  ^o  A )  e. 
U_ y  e.  x  ( C  ^o  y
) ) )
8313adantl 482 . . . . . . . . . 10  |-  ( ( Lim  x  /\  C  e.  ( On  \  2o ) )  ->  C  e.  On )
84 simpl 473 . . . . . . . . . 10  |-  ( ( Lim  x  /\  C  e.  ( On  \  2o ) )  ->  Lim  x )
8523adantl 482 . . . . . . . . . 10  |-  ( ( Lim  x  /\  C  e.  ( On  \  2o ) )  ->  (/)  e.  C
)
86 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
87 oelim 7614 . . . . . . . . . . 11  |-  ( ( ( C  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  C )  ->  ( C  ^o  x )  =  U_ y  e.  x  ( C  ^o  y ) )
8886, 87mpanlr1 722 . . . . . . . . . 10  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  (/) 
e.  C )  -> 
( C  ^o  x
)  =  U_ y  e.  x  ( C  ^o  y ) )
8983, 84, 85, 88syl21anc 1325 . . . . . . . . 9  |-  ( ( Lim  x  /\  C  e.  ( On  \  2o ) )  ->  ( C  ^o  x )  = 
U_ y  e.  x  ( C  ^o  y
) )
9089adantlr 751 . . . . . . . 8  |-  ( ( ( Lim  x  /\  A  e.  x )  /\  C  e.  ( On  \  2o ) )  ->  ( C  ^o  x )  =  U_ y  e.  x  ( C  ^o  y ) )
9190eleq2d 2687 . . . . . . 7  |-  ( ( ( Lim  x  /\  A  e.  x )  /\  C  e.  ( On  \  2o ) )  ->  ( ( C  ^o  A )  e.  ( C  ^o  x
)  <->  ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y ) ) )
9282, 91sylibrd 249 . . . . . 6  |-  ( ( ( Lim  x  /\  A  e.  x )  /\  C  e.  ( On  \  2o ) )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y
) )  ->  ( C  ^o  A )  e.  ( C  ^o  x
) ) )
9392ex 450 . . . . 5  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( C  e.  ( On  \  2o )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) ) ) )
9493a2d 29 . . . 4  |-  ( ( Lim  x  /\  A  e.  x )  ->  (
( C  e.  ( On  \  2o )  ->  A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) ) )  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) ) ) )
9564, 94syl5bi 232 . . 3  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) )  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x
) ) ) )
963, 6, 9, 12, 34, 60, 95tfindsg2 7061 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )
9796impancom 456 1  |-  ( ( B  e.  On  /\  C  e.  ( On  \  2o ) )  -> 
( A  e.  B  ->  ( C  ^o  A
)  e.  ( C  ^o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571   (/)c0 3915   U_ciun 4520   Oncon0 5723   Lim wlim 5724   suc csuc 5725  (class class class)co 6650   1oc1o 7553   2oc2o 7554    .o comu 7558    ^o coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oeord  7668  oecan  7669  oeworde  7673  oelimcl  7680
  Copyright terms: Public domain W3C validator