Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigolo1 Structured version   Visualization version   Unicode version

Theorem elbigolo1 42351
Description: A function (into the positive reals) is of order G(x) iff the quotient of the function and G(x) (also a function into the positive reals) is an eventually upper bounded function. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
elbigolo1  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( F  e.  (_O `  G
)  <->  ( F /_f  G
)  e.  <_O(1) ) )

Proof of Theorem elbigolo1
Dummy variables  x  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12  |-  ( F : A --> RR+  ->  F : A --> RR+ )
2 rpssre 11843 . . . . . . . . . . . . 13  |-  RR+  C_  RR
32a1i 11 . . . . . . . . . . . 12  |-  ( F : A --> RR+  ->  RR+  C_  RR )
41, 3fssd 6057 . . . . . . . . . . 11  |-  ( F : A --> RR+  ->  F : A --> RR )
543ad2ant3 1084 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  F : A --> RR )
65adantr 481 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A --> RR+ )  /\  (
x  e.  RR  /\  m  e.  RR )
)  ->  F : A
--> RR )
76ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( F `  y
)  e.  RR )
8 simplrr 801 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  m  e.  RR )
9 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A --> RR+ )  /\  (
x  e.  RR  /\  m  e.  RR )
)  ->  G : A
--> RR+ )
109ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( G `  y
)  e.  RR+ )
1110rpregt0d 11878 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( ( G `  y )  e.  RR  /\  0  <  ( G `
 y ) ) )
127, 8, 113jca 1242 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( ( F `  y )  e.  RR  /\  m  e.  RR  /\  ( ( G `  y )  e.  RR  /\  0  <  ( G `
 y ) ) ) )
13 ledivmul2 10902 . . . . . . . 8  |-  ( ( ( F `  y
)  e.  RR  /\  m  e.  RR  /\  (
( G `  y
)  e.  RR  /\  0  <  ( G `  y ) ) )  ->  ( ( ( F `  y )  /  ( G `  y ) )  <_  m 
<->  ( F `  y
)  <_  ( m  x.  ( G `  y
) ) ) )
1413bicomd 213 . . . . . . 7  |-  ( ( ( F `  y
)  e.  RR  /\  m  e.  RR  /\  (
( G `  y
)  e.  RR  /\  0  <  ( G `  y ) ) )  ->  ( ( F `
 y )  <_ 
( m  x.  ( G `  y )
)  <->  ( ( F `
 y )  / 
( G `  y
) )  <_  m
) )
1512, 14syl 17 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( ( F `  y )  <_  (
m  x.  ( G `
 y ) )  <-> 
( ( F `  y )  /  ( G `  y )
)  <_  m )
)
16 id 22 . . . . . . . . . . . . 13  |-  ( G : A --> RR+  ->  G : A --> RR+ )
172a1i 11 . . . . . . . . . . . . 13  |-  ( G : A --> RR+  ->  RR+  C_  RR )
1816, 17fssd 6057 . . . . . . . . . . . 12  |-  ( G : A --> RR+  ->  G : A --> RR )
19183ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  G : A --> RR )
20 reex 10027 . . . . . . . . . . . . 13  |-  RR  e.  _V
2120ssex 4802 . . . . . . . . . . . 12  |-  ( A 
C_  RR  ->  A  e. 
_V )
22213ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  A  e.  _V )
235, 19, 223jca 1242 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( F : A --> RR  /\  G : A --> RR  /\  A  e.  _V )
)
2423adantr 481 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A --> RR+ )  /\  (
x  e.  RR  /\  m  e.  RR )
)  ->  ( F : A --> RR  /\  G : A --> RR  /\  A  e.  _V ) )
2524adantr 481 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( F : A --> RR  /\  G : A --> RR  /\  A  e.  _V ) )
26 ffun 6048 . . . . . . . . . . . . . . . 16  |-  ( G : A --> RR+  ->  Fun 
G )
2726adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  Fun  G )
2821anim1i 592 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  ( A  e.  _V  /\  G : A --> RR+ ) )
2928ancomd 467 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  ( G : A --> RR+  /\  A  e.  _V ) )
30 fex 6490 . . . . . . . . . . . . . . . 16  |-  ( ( G : A --> RR+  /\  A  e.  _V )  ->  G  e.  _V )
3129, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  G  e.  _V )
32 0red 10041 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  0  e.  RR )
33 frn 6053 . . . . . . . . . . . . . . . . 17  |-  ( G : A --> RR+  ->  ran 
G  C_  RR+ )
34 0nrp 11865 . . . . . . . . . . . . . . . . . . 19  |-  -.  0  e.  RR+
35 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( ran 
G  C_  RR+  ->  ran  G 
C_  RR+ )
3635ssneld 3605 . . . . . . . . . . . . . . . . . . 19  |-  ( ran 
G  C_  RR+  ->  ( -.  0  e.  RR+  ->  -.  0  e.  ran  G
) )
3734, 36mpi 20 . . . . . . . . . . . . . . . . . 18  |-  ( ran 
G  C_  RR+  ->  -.  0  e.  ran  G )
38 df-nel 2898 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e/  ran  G  <->  -.  0  e.  ran  G )
3937, 38sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( ran 
G  C_  RR+  ->  0  e/  ran  G )
4033, 39syl 17 . . . . . . . . . . . . . . . 16  |-  ( G : A --> RR+  ->  0  e/  ran  G )
4140adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  0  e/  ran  G )
42 suppdm 42300 . . . . . . . . . . . . . . 15  |-  ( ( ( Fun  G  /\  G  e.  _V  /\  0  e.  RR )  /\  0  e/  ran  G )  -> 
( G supp  0 )  =  dom  G )
4327, 31, 32, 41, 42syl31anc 1329 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  ( G supp  0 )  =  dom  G )
44 fdm 6051 . . . . . . . . . . . . . . 15  |-  ( G : A --> RR+  ->  dom 
G  =  A )
4544adantl 482 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  dom  G  =  A )
4643, 45eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  ( G supp  0 )  =  A )
47463adant3 1081 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( G supp  0 )  =  A )
4847eqcomd 2628 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  A  =  ( G supp  0
) )
4948adantr 481 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A --> RR+ )  /\  (
x  e.  RR  /\  m  e.  RR )
)  ->  A  =  ( G supp  0 )
)
5049eleq2d 2687 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A --> RR+ )  /\  (
x  e.  RR  /\  m  e.  RR )
)  ->  ( y  e.  A  <->  y  e.  ( G supp  0 ) ) )
5150biimpa 501 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  y  e.  ( G supp  0 ) )
52 refdivmptfv 42340 . . . . . . . 8  |-  ( ( ( F : A --> RR  /\  G : A --> RR  /\  A  e.  _V )  /\  y  e.  ( G supp  0 ) )  ->  ( ( F /_f 
G ) `  y
)  =  ( ( F `  y )  /  ( G `  y ) ) )
5325, 51, 52syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( ( F /_f  G
) `  y )  =  ( ( F `
 y )  / 
( G `  y
) ) )
5453breq1d 4663 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( ( ( F /_f 
G ) `  y
)  <_  m  <->  ( ( F `  y )  /  ( G `  y ) )  <_  m ) )
5515, 54bitr4d 271 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( ( F `  y )  <_  (
m  x.  ( G `
 y ) )  <-> 
( ( F /_f  G
) `  y )  <_  m ) )
5655imbi2d 330 . . . 4  |-  ( ( ( ( A  C_  RR  /\  G : A --> RR+ 
/\  F : A --> RR+ )  /\  ( x  e.  RR  /\  m  e.  RR ) )  /\  y  e.  A )  ->  ( ( x  <_ 
y  ->  ( F `  y )  <_  (
m  x.  ( G `
 y ) ) )  <->  ( x  <_ 
y  ->  ( ( F /_f  G ) `  y
)  <_  m )
) )
5756ralbidva 2985 . . 3  |-  ( ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A --> RR+ )  /\  (
x  e.  RR  /\  m  e.  RR )
)  ->  ( A. y  e.  A  (
x  <_  y  ->  ( F `  y )  <_  ( m  x.  ( G `  y
) ) )  <->  A. y  e.  A  ( x  <_  y  ->  ( ( F /_f  G ) `  y
)  <_  m )
) )
58572rexbidva 3056 . 2  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( E. x  e.  RR  E. m  e.  RR  A. y  e.  A  (
x  <_  y  ->  ( F `  y )  <_  ( m  x.  ( G `  y
) ) )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( F /_f  G ) `  y
)  <_  m )
) )
59 simp1 1061 . . 3  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  A  C_  RR )
60 ssid 3624 . . . 4  |-  A  C_  A
6160a1i 11 . . 3  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  A  C_  A )
62 elbigo2 42346 . . 3  |-  ( ( ( G : A --> RR  /\  A  C_  RR )  /\  ( F : A
--> RR  /\  A  C_  A ) )  -> 
( F  e.  (_O
`  G )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( F `  y )  <_  (
m  x.  ( G `
 y ) ) ) ) )
6319, 59, 5, 61, 62syl22anc 1327 . 2  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( F  e.  (_O `  G
)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  (
x  <_  y  ->  ( F `  y )  <_  ( m  x.  ( G `  y
) ) ) ) )
64 refdivmptf 42336 . . . . 5  |-  ( ( F : A --> RR  /\  G : A --> RR  /\  A  e.  _V )  ->  ( F /_f  G ) : ( G supp  0
) --> RR )
6523, 64syl 17 . . . 4  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( F /_f  G ) : ( G supp  0 ) --> RR )
6644eqcomd 2628 . . . . . . 7  |-  ( G : A --> RR+  ->  A  =  dom  G )
67663ad2ant2 1083 . . . . . 6  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  A  =  dom  G )
68 simpr 477 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  G : A --> RR+ )
6921adantr 481 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  A  e.  _V )
7068, 69, 30syl2anc 693 . . . . . . . 8  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  G  e.  _V )
7127, 70, 32, 41, 42syl31anc 1329 . . . . . . 7  |-  ( ( A  C_  RR  /\  G : A --> RR+ )  ->  ( G supp  0 )  =  dom  G )
72713adant3 1081 . . . . . 6  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( G supp  0 )  =  dom  G )
7367, 72eqtr4d 2659 . . . . 5  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  A  =  ( G supp  0
) )
7473feq2d 6031 . . . 4  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  (
( F /_f  G ) : A --> RR  <->  ( F /_f  G ) : ( G supp  0 ) --> RR ) )
7565, 74mpbird 247 . . 3  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( F /_f  G ) : A --> RR )
76 ello12 14247 . . 3  |-  ( ( ( F /_f  G ) : A --> RR  /\  A  C_  RR )  -> 
( ( F /_f  G
)  e.  <_O(1)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( F /_f  G ) `  y
)  <_  m )
) )
7775, 59, 76syl2anc 693 . 2  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  (
( F /_f  G )  e.  <_O(1)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  (
x  <_  y  ->  ( ( F /_f  G ) `
 y )  <_  m ) ) )
7858, 63, 773bitr4d 300 1  |-  ( ( A  C_  RR  /\  G : A --> RR+  /\  F : A
--> RR+ )  ->  ( F  e.  (_O `  G
)  <->  ( F /_f  G
)  e.  <_O(1) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    e/ wnel 2897   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   dom cdm 5114   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   RRcr 9935   0cc0 9936    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   RR+crp 11832   <_O(1)clo1 14218   /_f cfdiv 42331  _Ocbigo 42341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-supp 7296  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833  df-ico 12181  df-lo1 14222  df-fdiv 42332  df-bigo 42342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator