MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supcvg Structured version   Visualization version   Unicode version

Theorem supcvg 14588
Description: Extract a sequence  f in  X such that the image of the points in the bounded set  A converges to the supremum  S of the set. Similar to Equation 4 of [Kreyszig] p. 144. The proof uses countable choice ax-cc 9257. (Contributed by Mario Carneiro, 15-Feb-2013.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
supcvg.1  |-  X  e. 
_V
supcvg.2  |-  S  =  sup ( A ,  RR ,  <  )
supcvg.3  |-  R  =  ( n  e.  NN  |->  ( S  -  (
1  /  n ) ) )
supcvg.4  |-  ( ph  ->  X  =/=  (/) )
supcvg.5  |-  ( ph  ->  F : X -onto-> A
)
supcvg.6  |-  ( ph  ->  A  C_  RR )
supcvg.7  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
Assertion
Ref Expression
supcvg  |-  ( ph  ->  E. f ( f : NN --> X  /\  ( F  o.  f
)  ~~>  S ) )
Distinct variable groups:    x, f, F    f, n, ph    R, f, x    f, X, x   
x, y, A    S, n
Allowed substitution hints:    ph( x, y)    A( f, n)    R( y, n)    S( x, y, f)    F( y, n)    X( y, n)

Proof of Theorem supcvg
Dummy variables  k  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
21oveq2d 6666 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( S  -  ( 1  /  n ) )  =  ( S  -  ( 1  /  k
) ) )
3 supcvg.3 . . . . . . . . . . 11  |-  R  =  ( n  e.  NN  |->  ( S  -  (
1  /  n ) ) )
4 ovex 6678 . . . . . . . . . . 11  |-  ( S  -  ( 1  / 
k ) )  e. 
_V
52, 3, 4fvmpt 6282 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( R `  k )  =  ( S  -  ( 1  /  k
) ) )
65adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( R `
 k )  =  ( S  -  (
1  /  k ) ) )
7 supcvg.2 . . . . . . . . . . 11  |-  S  =  sup ( A ,  RR ,  <  )
8 supcvg.6 . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  RR )
9 supcvg.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  X  =/=  (/) )
10 supcvg.5 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : X -onto-> A
)
11 fof 6115 . . . . . . . . . . . . . . . . . 18  |-  ( F : X -onto-> A  ->  F : X --> A )
1210, 11syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : X --> A )
13 feq3 6028 . . . . . . . . . . . . . . . . 17  |-  ( A  =  (/)  ->  ( F : X --> A  <->  F : X
--> (/) ) )
1412, 13syl5ibcom 235 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  =  (/)  ->  F : X --> (/) ) )
15 f00 6087 . . . . . . . . . . . . . . . . 17  |-  ( F : X --> (/)  <->  ( F  =  (/)  /\  X  =  (/) ) )
1615simprbi 480 . . . . . . . . . . . . . . . 16  |-  ( F : X --> (/)  ->  X  =  (/) )
1714, 16syl6 35 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  =  (/)  ->  X  =  (/) ) )
1817necon3d 2815 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  =/=  (/)  ->  A  =/=  (/) ) )
199, 18mpd 15 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =/=  (/) )
20 supcvg.7 . . . . . . . . . . . . 13  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
218, 19, 203jca 1242 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x ) )
22 suprcl 10983 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
2321, 22syl 17 . . . . . . . . . . 11  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
247, 23syl5eqel 2705 . . . . . . . . . 10  |-  ( ph  ->  S  e.  RR )
25 nnrp 11842 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR+ )
2625rpreccld 11882 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR+ )
27 ltsubrp 11866 . . . . . . . . . 10  |-  ( ( S  e.  RR  /\  ( 1  /  k
)  e.  RR+ )  ->  ( S  -  (
1  /  k ) )  <  S )
2824, 26, 27syl2an 494 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( S  -  ( 1  / 
k ) )  < 
S )
296, 28eqbrtrd 4675 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( R `
 k )  < 
S )
3029, 7syl6breq 4694 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( R `
 k )  <  sup ( A ,  RR ,  <  ) )
3121adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( A 
C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
32 nnrecre 11057 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
1  /  n )  e.  RR )
33 resubcl 10345 . . . . . . . . . . 11  |-  ( ( S  e.  RR  /\  ( 1  /  n
)  e.  RR )  ->  ( S  -  ( 1  /  n
) )  e.  RR )
3424, 32, 33syl2an 494 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( S  -  ( 1  /  n ) )  e.  RR )
3534, 3fmptd 6385 . . . . . . . . 9  |-  ( ph  ->  R : NN --> RR )
3635ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( R `
 k )  e.  RR )
37 suprlub 10987 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( R `
 k )  e.  RR )  ->  (
( R `  k
)  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( R `  k )  <  z ) )
3831, 36, 37syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( R `  k )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( R `  k )  <  z
) )
3930, 38mpbid 222 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  E. z  e.  A  ( R `  k )  <  z
)
4036adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  z  e.  A )  ->  ( R `  k )  e.  RR )
418adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  A  C_  RR )
4241sselda 3603 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  z  e.  A )  ->  z  e.  RR )
43 ltle 10126 . . . . . . . 8  |-  ( ( ( R `  k
)  e.  RR  /\  z  e.  RR )  ->  ( ( R `  k )  <  z  ->  ( R `  k
)  <_  z )
)
4440, 42, 43syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  z  e.  A )  ->  (
( R `  k
)  <  z  ->  ( R `  k )  <_  z ) )
4544reximdva 3017 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( E. z  e.  A  ( R `  k )  <  z  ->  E. z  e.  A  ( R `  k )  <_  z
) )
4639, 45mpd 15 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  E. z  e.  A  ( R `  k )  <_  z
)
47 forn 6118 . . . . . . . . 9  |-  ( F : X -onto-> A  ->  ran  F  =  A )
4810, 47syl 17 . . . . . . . 8  |-  ( ph  ->  ran  F  =  A )
4948rexeqdv 3145 . . . . . . 7  |-  ( ph  ->  ( E. z  e. 
ran  F ( R `
 k )  <_ 
z  <->  E. z  e.  A  ( R `  k )  <_  z ) )
50 ffn 6045 . . . . . . . 8  |-  ( F : X --> A  ->  F  Fn  X )
51 breq2 4657 . . . . . . . . 9  |-  ( z  =  ( F `  x )  ->  (
( R `  k
)  <_  z  <->  ( R `  k )  <_  ( F `  x )
) )
5251rexrn 6361 . . . . . . . 8  |-  ( F  Fn  X  ->  ( E. z  e.  ran  F ( R `  k
)  <_  z  <->  E. x  e.  X  ( R `  k )  <_  ( F `  x )
) )
5312, 50, 523syl 18 . . . . . . 7  |-  ( ph  ->  ( E. z  e. 
ran  F ( R `
 k )  <_ 
z  <->  E. x  e.  X  ( R `  k )  <_  ( F `  x ) ) )
5449, 53bitr3d 270 . . . . . 6  |-  ( ph  ->  ( E. z  e.  A  ( R `  k )  <_  z  <->  E. x  e.  X  ( R `  k )  <_  ( F `  x ) ) )
5554adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( E. z  e.  A  ( R `  k )  <_  z  <->  E. x  e.  X  ( R `  k )  <_  ( F `  x )
) )
5646, 55mpbid 222 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  E. x  e.  X  ( R `  k )  <_  ( F `  x )
)
5756ralrimiva 2966 . . 3  |-  ( ph  ->  A. k  e.  NN  E. x  e.  X  ( R `  k )  <_  ( F `  x ) )
58 supcvg.1 . . . 4  |-  X  e. 
_V
59 nnenom 12779 . . . 4  |-  NN  ~~  om
60 fveq2 6191 . . . . 5  |-  ( x  =  ( f `  k )  ->  ( F `  x )  =  ( F `  ( f `  k
) ) )
6160breq2d 4665 . . . 4  |-  ( x  =  ( f `  k )  ->  (
( R `  k
)  <_  ( F `  x )  <->  ( R `  k )  <_  ( F `  ( f `  k ) ) ) )
6258, 59, 61axcc4 9261 . . 3  |-  ( A. k  e.  NN  E. x  e.  X  ( R `  k )  <_  ( F `  x )  ->  E. f ( f : NN --> X  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) ) )
6357, 62syl 17 . 2  |-  ( ph  ->  E. f ( f : NN --> X  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) ) )
64 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
65 1zzd 11408 . . . . . 6  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  1  e.  ZZ )
66 1zzd 11408 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
6724recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  S  e.  CC )
68 1z 11407 . . . . . . . . . 10  |-  1  e.  ZZ
6964eqimss2i 3660 . . . . . . . . . . 11  |-  ( ZZ>= ` 
1 )  C_  NN
70 nnex 11026 . . . . . . . . . . 11  |-  NN  e.  _V
7169, 70climconst2 14279 . . . . . . . . . 10  |-  ( ( S  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { S } )  ~~>  S )
7267, 68, 71sylancl 694 . . . . . . . . 9  |-  ( ph  ->  ( NN  X.  { S } )  ~~>  S )
7370mptex 6486 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( S  -  ( 1  /  n ) ) )  e.  _V
743, 73eqeltri 2697 . . . . . . . . . 10  |-  R  e. 
_V
7574a1i 11 . . . . . . . . 9  |-  ( ph  ->  R  e.  _V )
76 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
77 divcnv 14585 . . . . . . . . . 10  |-  ( 1  e.  CC  ->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 )
7876, 77mp1i 13 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  NN  |->  ( 1  /  n
) )  ~~>  0 )
79 fvconst2g 6467 . . . . . . . . . . 11  |-  ( ( S  e.  RR  /\  k  e.  NN )  ->  ( ( NN  X.  { S } ) `  k )  =  S )
8024, 79sylan 488 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( NN  X.  { S } ) `  k
)  =  S )
8167adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  S  e.  CC )
8280, 81eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( NN  X.  { S } ) `  k
)  e.  CC )
83 eqid 2622 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  ( 1  /  n ) )  =  ( n  e.  NN  |->  ( 1  /  n ) )
84 ovex 6678 . . . . . . . . . . . 12  |-  ( 1  /  k )  e. 
_V
851, 83, 84fvmpt 6282 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  k
)  =  ( 1  /  k ) )
8685adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  n ) ) `  k )  =  ( 1  / 
k ) )
87 nnrecre 11057 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
8887recnd 10068 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
1  /  k )  e.  CC )
8988adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  k )  e.  CC )
9086, 89eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  n ) ) `  k )  e.  CC )
9180, 86oveq12d 6668 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( NN  X.  { S } ) `  k
)  -  ( ( n  e.  NN  |->  ( 1  /  n ) ) `  k ) )  =  ( S  -  ( 1  / 
k ) ) )
926, 91eqtr4d 2659 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( R `
 k )  =  ( ( ( NN 
X.  { S }
) `  k )  -  ( ( n  e.  NN  |->  ( 1  /  n ) ) `
 k ) ) )
9364, 66, 72, 75, 78, 82, 90, 92climsub 14364 . . . . . . . 8  |-  ( ph  ->  R  ~~>  ( S  - 
0 ) )
9467subid1d 10381 . . . . . . . 8  |-  ( ph  ->  ( S  -  0 )  =  S )
9593, 94breqtrd 4679 . . . . . . 7  |-  ( ph  ->  R  ~~>  S )
9695ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  R  ~~>  S )
9712ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  F : X --> A )
98 fex 6490 . . . . . . . 8  |-  ( ( F : X --> A  /\  X  e.  _V )  ->  F  e.  _V )
9997, 58, 98sylancl 694 . . . . . . 7  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  F  e.  _V )
100 vex 3203 . . . . . . 7  |-  f  e. 
_V
101 coexg 7117 . . . . . . 7  |-  ( ( F  e.  _V  /\  f  e.  _V )  ->  ( F  o.  f
)  e.  _V )
10299, 100, 101sylancl 694 . . . . . 6  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  ( F  o.  f )  e.  _V )
10335ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  R : NN --> RR )
104103ffvelrnda 6359 . . . . . 6  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( R `  m )  e.  RR )
10512, 8fssd 6057 . . . . . . . . 9  |-  ( ph  ->  F : X --> RR )
106 fco 6058 . . . . . . . . 9  |-  ( ( F : X --> RR  /\  f : NN --> X )  ->  ( F  o.  f ) : NN --> RR )
107105, 106sylan 488 . . . . . . . 8  |-  ( (
ph  /\  f : NN
--> X )  ->  ( F  o.  f ) : NN --> RR )
108107adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  ( F  o.  f ) : NN --> RR )
109108ffvelrnda 6359 . . . . . 6  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( ( F  o.  f ) `  m )  e.  RR )
110 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  m  ->  ( R `  k )  =  ( R `  m ) )
111 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
f `  k )  =  ( f `  m ) )
112111fveq2d 6195 . . . . . . . . . 10  |-  ( k  =  m  ->  ( F `  ( f `  k ) )  =  ( F `  (
f `  m )
) )
113110, 112breq12d 4666 . . . . . . . . 9  |-  ( k  =  m  ->  (
( R `  k
)  <_  ( F `  ( f `  k
) )  <->  ( R `  m )  <_  ( F `  ( f `  m ) ) ) )
114113rspccva 3308 . . . . . . . 8  |-  ( ( A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k
) )  /\  m  e.  NN )  ->  ( R `  m )  <_  ( F `  (
f `  m )
) )
115114adantll 750 . . . . . . 7  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( R `  m )  <_  ( F `  ( f `  m ) ) )
116 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  f : NN --> X )
117 fvco3 6275 . . . . . . . 8  |-  ( ( f : NN --> X  /\  m  e.  NN )  ->  ( ( F  o.  f ) `  m
)  =  ( F `
 ( f `  m ) ) )
118116, 117sylan 488 . . . . . . 7  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( ( F  o.  f ) `  m )  =  ( F `  ( f `
 m ) ) )
119115, 118breqtrrd 4681 . . . . . 6  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( R `  m )  <_  (
( F  o.  f
) `  m )
)
12021ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x ) )
121116ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( f `  m )  e.  X
)
12297ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  ( f `  m )  e.  X
)  ->  ( F `  ( f `  m
) )  e.  A
)
123121, 122syldan 487 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( F `  ( f `  m
) )  e.  A
)
124 suprub 10984 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( F `
 ( f `  m ) )  e.  A )  ->  ( F `  ( f `  m ) )  <_  sup ( A ,  RR ,  <  ) )
125120, 123, 124syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( F `  ( f `  m
) )  <_  sup ( A ,  RR ,  <  ) )
126125, 7syl6breqr 4695 . . . . . . 7  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( F `  ( f `  m
) )  <_  S
)
127118, 126eqbrtrd 4675 . . . . . 6  |-  ( ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k ) ) )  /\  m  e.  NN )  ->  ( ( F  o.  f ) `  m )  <_  S
)
12864, 65, 96, 102, 104, 109, 119, 127climsqz 14371 . . . . 5  |-  ( ( ( ph  /\  f : NN --> X )  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  ( F  o.  f )  ~~>  S )
129128ex 450 . . . 4  |-  ( (
ph  /\  f : NN
--> X )  ->  ( A. k  e.  NN  ( R `  k )  <_  ( F `  ( f `  k
) )  ->  ( F  o.  f )  ~~>  S ) )
130129imdistanda 729 . . 3  |-  ( ph  ->  ( ( f : NN --> X  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  (
f : NN --> X  /\  ( F  o.  f
)  ~~>  S ) ) )
131130eximdv 1846 . 2  |-  ( ph  ->  ( E. f ( f : NN --> X  /\  A. k  e.  NN  ( R `  k )  <_  ( F `  (
f `  k )
) )  ->  E. f
( f : NN --> X  /\  ( F  o.  f )  ~~>  S ) ) )
13263, 131mpd 15 1  |-  ( ph  ->  E. f ( f : NN --> X  /\  ( F  o.  f
)  ~~>  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator