MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiming Structured version   Visualization version   Unicode version

Theorem fiming 8404
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.)
Assertion
Ref Expression
fiming  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  x R y ) )
Distinct variable groups:    x, R, y    x, A, y

Proof of Theorem fiming
StepHypRef Expression
1 fimin2g 8403 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  y R x )
2 nesym 2850 . . . . . . . . 9  |-  ( x  =/=  y  <->  -.  y  =  x )
32imbi1i 339 . . . . . . . 8  |-  ( ( x  =/=  y  ->  x R y )  <->  ( -.  y  =  x  ->  x R y ) )
4 pm4.64 387 . . . . . . . 8  |-  ( ( -.  y  =  x  ->  x R y )  <->  ( y  =  x  \/  x R y ) )
53, 4bitri 264 . . . . . . 7  |-  ( ( x  =/=  y  ->  x R y )  <->  ( y  =  x  \/  x R y ) )
6 sotric 5061 . . . . . . . . 9  |-  ( ( R  Or  A  /\  ( y  e.  A  /\  x  e.  A
) )  ->  (
y R x  <->  -.  (
y  =  x  \/  x R y ) ) )
76ancom2s 844 . . . . . . . 8  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
y R x  <->  -.  (
y  =  x  \/  x R y ) ) )
87con2bid 344 . . . . . . 7  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( y  =  x  \/  x R y )  <->  -.  y R x ) )
95, 8syl5bb 272 . . . . . 6  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( x  =/=  y  ->  x R y )  <->  -.  y R x ) )
109anassrs 680 . . . . 5  |-  ( ( ( R  Or  A  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x  =/=  y  ->  x R y )  <->  -.  y R x ) )
1110ralbidva 2985 . . . 4  |-  ( ( R  Or  A  /\  x  e.  A )  ->  ( A. y  e.  A  ( x  =/=  y  ->  x R
y )  <->  A. y  e.  A  -.  y R x ) )
1211rexbidva 3049 . . 3  |-  ( R  Or  A  ->  ( E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  x R y )  <->  E. x  e.  A  A. y  e.  A  -.  y R x ) )
13123ad2ant1 1082 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  x R y )  <->  E. x  e.  A  A. y  e.  A  -.  y R x ) )
141, 13mpbird 247 1  |-  ( ( R  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  x R y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   class class class wbr 4653    Or wor 5034   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  fiinfg  8405
  Copyright terms: Public domain W3C validator