| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finlocfin | Structured version Visualization version Unicode version | ||
| Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| Ref | Expression |
|---|---|
| finlocfin.1 |
|
| finlocfin.2 |
|
| Ref | Expression |
|---|---|
| finlocfin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. 2
| |
| 2 | simp3 1063 |
. 2
| |
| 3 | simpl1 1064 |
. . . . 5
| |
| 4 | finlocfin.1 |
. . . . . 6
| |
| 5 | 4 | topopn 20711 |
. . . . 5
|
| 6 | 3, 5 | syl 17 |
. . . 4
|
| 7 | simpr 477 |
. . . 4
| |
| 8 | simpl2 1065 |
. . . . 5
| |
| 9 | ssrab2 3687 |
. . . . 5
| |
| 10 | ssfi 8180 |
. . . . 5
| |
| 11 | 8, 9, 10 | sylancl 694 |
. . . 4
|
| 12 | eleq2 2690 |
. . . . . 6
| |
| 13 | ineq2 3808 |
. . . . . . . . 9
| |
| 14 | 13 | neeq1d 2853 |
. . . . . . . 8
|
| 15 | 14 | rabbidv 3189 |
. . . . . . 7
|
| 16 | 15 | eleq1d 2686 |
. . . . . 6
|
| 17 | 12, 16 | anbi12d 747 |
. . . . 5
|
| 18 | 17 | rspcev 3309 |
. . . 4
|
| 19 | 6, 7, 11, 18 | syl12anc 1324 |
. . 3
|
| 20 | 19 | ralrimiva 2966 |
. 2
|
| 21 | finlocfin.2 |
. . 3
| |
| 22 | 4, 21 | islocfin 21320 |
. 2
|
| 23 | 1, 2, 20, 22 | syl3anbrc 1246 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-er 7742 df-en 7956 df-fin 7959 df-top 20699 df-locfin 21310 |
| This theorem is referenced by: locfincmp 21329 cmppcmp 29925 |
| Copyright terms: Public domain | W3C validator |