![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necomi | Structured version Visualization version Unicode version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necomi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | necom 2847 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 220 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-ne 2795 |
This theorem is referenced by: nesymi 2851 nesymir 2852 0nep0 4836 xp01disj 7576 1sdom 8163 pnfnemnf 10094 mnfnepnf 10095 ltneii 10150 0ne1 11088 0ne2 11239 xnn0n0n1ge2b 11965 xmulpnf1 12104 fzprval 12401 hashneq0 13155 f1oun2prg 13662 geo2sum2 14605 fprodn0f 14722 xpscfn 16219 xpsc0 16220 xpsc1 16221 rescabs 16493 dmdprdpr 18448 dprdpr 18449 mgpress 18500 cnfldfunALT 19759 xpstopnlem1 21612 1sgm2ppw 24925 2sqlem11 25154 axlowdimlem13 25834 usgrexmpldifpr 26150 usgrexmplef 26151 vdegp1ai 26432 vdegp1bi 26433 konigsbergiedgw 27108 konigsberglem2 27115 konigsberglem3 27116 ex-pss 27285 ex-hash 27310 signswch 30638 nosepnelem 31830 bj-disjsn01 32937 bj-1upln0 32997 finxpreclem3 33230 ovnsubadd2lem 40859 nnlog2ge0lt1 42360 logbpw2m1 42361 fllog2 42362 blennnelnn 42370 nnpw2blen 42374 blen1 42378 blen2 42379 blen1b 42382 blennnt2 42383 nnolog2flm1 42384 blennngt2o2 42386 blennn0e2 42388 |
Copyright terms: Public domain | W3C validator |