Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem5 Structured version   Visualization version   Unicode version

Theorem finxpreclem5 33232
Description: Lemma for  ^^ ^^ recursion theorems. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem5.1  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
Assertion
Ref Expression
finxpreclem5  |-  ( ( n  e.  om  /\  1o  e.  n )  -> 
( -.  x  e.  ( _V  X.  U
)  ->  ( F `  <. n ,  x >. )  =  <. n ,  x >. ) )
Distinct variable group:    x, n
Allowed substitution hints:    U( x, n)    F( x, n)

Proof of Theorem finxpreclem5
StepHypRef Expression
1 df-ov 6653 . . 3  |-  ( n F x )  =  ( F `  <. n ,  x >. )
2 vex 3203 . . . . . 6  |-  x  e. 
_V
3 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
4 opex 4932 . . . . . . . 8  |-  <. U. n ,  ( 1st `  x
) >.  e.  _V
5 opex 4932 . . . . . . . 8  |-  <. n ,  x >.  e.  _V
64, 5ifex 4156 . . . . . . 7  |-  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  e.  _V
73, 6ifex 4156 . . . . . 6  |-  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  e. 
_V
8 finxpreclem5.1 . . . . . . 7  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
98ovmpt4g 6783 . . . . . 6  |-  ( ( n  e.  om  /\  x  e.  _V  /\  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  e. 
_V )  ->  (
n F x )  =  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )
102, 7, 9mp3an23 1416 . . . . 5  |-  ( n  e.  om  ->  (
n F x )  =  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )
1110ad2antrr 762 . . . 4  |-  ( ( ( n  e.  om  /\  1o  e.  n )  /\  -.  x  e.  ( _V  X.  U
) )  ->  (
n F x )  =  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )
12 1on 7567 . . . . . . . . . . 11  |-  1o  e.  On
1312onirri 5834 . . . . . . . . . 10  |-  -.  1o  e.  1o
14 eleq2 2690 . . . . . . . . . 10  |-  ( n  =  1o  ->  ( 1o  e.  n  <->  1o  e.  1o ) )
1513, 14mtbiri 317 . . . . . . . . 9  |-  ( n  =  1o  ->  -.  1o  e.  n )
1615con2i 134 . . . . . . . 8  |-  ( 1o  e.  n  ->  -.  n  =  1o )
1716intnanrd 963 . . . . . . 7  |-  ( 1o  e.  n  ->  -.  ( n  =  1o  /\  x  e.  U ) )
1817iffalsed 4097 . . . . . 6  |-  ( 1o  e.  n  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  =  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )
1918adantl 482 . . . . 5  |-  ( ( n  e.  om  /\  1o  e.  n )  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  =  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )
20 iffalse 4095 . . . . 5  |-  ( -.  x  e.  ( _V 
X.  U )  ->  if ( x  e.  ( _V  X.  U ) ,  <. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. )  =  <. n ,  x >. )
2119, 20sylan9eq 2676 . . . 4  |-  ( ( ( n  e.  om  /\  1o  e.  n )  /\  -.  x  e.  ( _V  X.  U
) )  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  = 
<. n ,  x >. )
2211, 21eqtrd 2656 . . 3  |-  ( ( ( n  e.  om  /\  1o  e.  n )  /\  -.  x  e.  ( _V  X.  U
) )  ->  (
n F x )  =  <. n ,  x >. )
231, 22syl5eqr 2670 . 2  |-  ( ( ( n  e.  om  /\  1o  e.  n )  /\  -.  x  e.  ( _V  X.  U
) )  ->  ( F `  <. n ,  x >. )  =  <. n ,  x >. )
2423ex 450 1  |-  ( ( n  e.  om  /\  1o  e.  n )  -> 
( -.  x  e.  ( _V  X.  U
)  ->  ( F `  <. n ,  x >. )  =  <. n ,  x >. ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   1stc1st 7166   1oc1o 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560
This theorem is referenced by:  finxpreclem6  33233
  Copyright terms: Public domain W3C validator