MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfib Structured version   Visualization version   Unicode version

Theorem fodomfib 8240
Description: Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 9348 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomfib  |-  ( A  e.  Fin  ->  (
( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem fodomfib
StepHypRef Expression
1 fof 6115 . . . . . . . . . . . . 13  |-  ( f : A -onto-> B  -> 
f : A --> B )
2 fdm 6051 . . . . . . . . . . . . 13  |-  ( f : A --> B  ->  dom  f  =  A
)
31, 2syl 17 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  ->  dom  f  =  A
)
43eqeq1d 2624 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  A  =  (/) ) )
5 dm0rn0 5342 . . . . . . . . . . . 12  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
6 forn 6118 . . . . . . . . . . . . 13  |-  ( f : A -onto-> B  ->  ran  f  =  B
)
76eqeq1d 2624 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  -> 
( ran  f  =  (/)  <->  B  =  (/) ) )
85, 7syl5bb 272 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  B  =  (/) ) )
94, 8bitr3d 270 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( A  =  (/)  <->  B  =  (/) ) )
109necon3bid 2838 . . . . . . . . 9  |-  ( f : A -onto-> B  -> 
( A  =/=  (/)  <->  B  =/=  (/) ) )
1110biimpac 503 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  B  =/=  (/) )
1211adantll 750 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/) )  /\  f : A -onto-> B )  ->  B  =/=  (/) )
13 vex 3203 . . . . . . . . . . . 12  |-  f  e. 
_V
1413rnex 7100 . . . . . . . . . . 11  |-  ran  f  e.  _V
156, 14syl6eqelr 2710 . . . . . . . . . 10  |-  ( f : A -onto-> B  ->  B  e.  _V )
1615adantl 482 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  f : A -onto-> B )  ->  B  e.  _V )
17 0sdomg 8089 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
1816, 17syl 17 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  f : A -onto-> B )  ->  ( (/)  ~<  B  <->  B  =/=  (/) ) )
1918adantlr 751 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/) )  /\  f : A -onto-> B )  ->  ( (/)  ~<  B  <->  B  =/=  (/) ) )
2012, 19mpbird 247 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/) )  /\  f : A -onto-> B )  ->  (/)  ~<  B )
2120ex 450 . . . . 5  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  (
f : A -onto-> B  -> 
(/)  ~<  B ) )
22 fodomfi 8239 . . . . . . 7  |-  ( ( A  e.  Fin  /\  f : A -onto-> B )  ->  B  ~<_  A )
2322ex 450 . . . . . 6  |-  ( A  e.  Fin  ->  (
f : A -onto-> B  ->  B  ~<_  A ) )
2423adantr 481 . . . . 5  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  (
f : A -onto-> B  ->  B  ~<_  A ) )
2521, 24jcad 555 . . . 4  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  (
f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2625exlimdv 1861 . . 3  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. f  f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2726expimpd 629 . 2  |-  ( A  e.  Fin  ->  (
( A  =/=  (/)  /\  E. f  f : A -onto-> B )  ->  ( (/) 
~<  B  /\  B  ~<_  A ) ) )
28 sdomdomtr 8093 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  (/)  ~<  A )
29 0sdomg 8089 . . . 4  |-  ( A  e.  Fin  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3028, 29syl5ib 234 . . 3  |-  ( A  e.  Fin  ->  (
( (/)  ~<  B  /\  B  ~<_  A )  ->  A  =/=  (/) ) )
31 fodomr 8111 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. f 
f : A -onto-> B
)
3231a1i 11 . . 3  |-  ( A  e.  Fin  ->  (
( (/)  ~<  B  /\  B  ~<_  A )  ->  E. f  f : A -onto-> B ) )
3330, 32jcad 555 . 2  |-  ( A  e.  Fin  ->  (
( (/)  ~<  B  /\  B  ~<_  A )  -> 
( A  =/=  (/)  /\  E. f  f : A -onto-> B ) ) )
3427, 33impbid 202 1  |-  ( A  e.  Fin  ->  (
( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   dom cdm 5114   ran crn 5115   -->wf 5884   -onto->wfo 5886    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator