MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem1 Structured version   Visualization version   Unicode version

Theorem ttukeylem1 9331
Description: Lemma for ttukey 9340. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
ttukeylem.2  |-  ( ph  ->  B  e.  A )
ttukeylem.3  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
Assertion
Ref Expression
ttukeylem1  |-  ( ph  ->  ( C  e.  A  <->  ( ~P C  i^i  Fin )  C_  A ) )
Distinct variable groups:    x, C    x, A    x, B    x, F
Allowed substitution hint:    ph( x)

Proof of Theorem ttukeylem1
StepHypRef Expression
1 elex 3212 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
21a1i 11 . 2  |-  ( ph  ->  ( C  e.  A  ->  C  e.  _V )
)
3 id 22 . . . . 5  |-  ( ( ~P C  i^i  Fin )  C_  A  ->  ( ~P C  i^i  Fin )  C_  A )
4 ssun1 3776 . . . . . . . 8  |-  U. A  C_  ( U. A  u.  B )
5 undif1 4043 . . . . . . . 8  |-  ( ( U. A  \  B
)  u.  B )  =  ( U. A  u.  B )
64, 5sseqtr4i 3638 . . . . . . 7  |-  U. A  C_  ( ( U. A  \  B )  u.  B
)
7 fvex 6201 . . . . . . . . 9  |-  ( card `  ( U. A  \  B ) )  e. 
_V
8 ttukeylem.1 . . . . . . . . . 10  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
9 f1ofo 6144 . . . . . . . . . 10  |-  ( F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B )  ->  F : ( card `  ( U. A  \  B ) ) -onto-> ( U. A  \  B ) )
108, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -onto-> ( U. A  \  B
) )
11 fornex 7135 . . . . . . . . 9  |-  ( (
card `  ( U. A  \  B ) )  e.  _V  ->  ( F : ( card `  ( U. A  \  B ) ) -onto-> ( U. A  \  B )  ->  ( U. A  \  B )  e.  _V ) )
127, 10, 11mpsyl 68 . . . . . . . 8  |-  ( ph  ->  ( U. A  \  B )  e.  _V )
13 ttukeylem.2 . . . . . . . 8  |-  ( ph  ->  B  e.  A )
14 unexg 6959 . . . . . . . 8  |-  ( ( ( U. A  \  B )  e.  _V  /\  B  e.  A )  ->  ( ( U. A  \  B )  u.  B )  e.  _V )
1512, 13, 14syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( U. A  \  B )  u.  B
)  e.  _V )
16 ssexg 4804 . . . . . . 7  |-  ( ( U. A  C_  (
( U. A  \  B )  u.  B
)  /\  ( ( U. A  \  B )  u.  B )  e. 
_V )  ->  U. A  e.  _V )
176, 15, 16sylancr 695 . . . . . 6  |-  ( ph  ->  U. A  e.  _V )
18 uniexb 6973 . . . . . 6  |-  ( A  e.  _V  <->  U. A  e. 
_V )
1917, 18sylibr 224 . . . . 5  |-  ( ph  ->  A  e.  _V )
20 ssexg 4804 . . . . 5  |-  ( ( ( ~P C  i^i  Fin )  C_  A  /\  A  e.  _V )  ->  ( ~P C  i^i  Fin )  e.  _V )
213, 19, 20syl2anr 495 . . . 4  |-  ( (
ph  /\  ( ~P C  i^i  Fin )  C_  A )  ->  ( ~P C  i^i  Fin )  e.  _V )
22 infpwfidom 8851 . . . 4  |-  ( ( ~P C  i^i  Fin )  e.  _V  ->  C  ~<_  ( ~P C  i^i  Fin ) )
23 reldom 7961 . . . . 5  |-  Rel  ~<_
2423brrelexi 5158 . . . 4  |-  ( C  ~<_  ( ~P C  i^i  Fin )  ->  C  e.  _V )
2521, 22, 243syl 18 . . 3  |-  ( (
ph  /\  ( ~P C  i^i  Fin )  C_  A )  ->  C  e.  _V )
2625ex 450 . 2  |-  ( ph  ->  ( ( ~P C  i^i  Fin )  C_  A  ->  C  e.  _V )
)
27 ttukeylem.3 . . 3  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
28 eleq1 2689 . . . . 5  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
29 pweq 4161 . . . . . . 7  |-  ( x  =  C  ->  ~P x  =  ~P C
)
3029ineq1d 3813 . . . . . 6  |-  ( x  =  C  ->  ( ~P x  i^i  Fin )  =  ( ~P C  i^i  Fin ) )
3130sseq1d 3632 . . . . 5  |-  ( x  =  C  ->  (
( ~P x  i^i 
Fin )  C_  A  <->  ( ~P C  i^i  Fin )  C_  A ) )
3228, 31bibi12d 335 . . . 4  |-  ( x  =  C  ->  (
( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A )  <->  ( C  e.  A  <->  ( ~P C  i^i  Fin )  C_  A
) ) )
3332spcgv 3293 . . 3  |-  ( C  e.  _V  ->  ( A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A
)  ->  ( C  e.  A  <->  ( ~P C  i^i  Fin )  C_  A
) ) )
3427, 33syl5com 31 . 2  |-  ( ph  ->  ( C  e.  _V  ->  ( C  e.  A  <->  ( ~P C  i^i  Fin )  C_  A ) ) )
352, 26, 34pm5.21ndd 369 1  |-  ( ph  ->  ( C  e.  A  <->  ( ~P C  i^i  Fin )  C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    ~<_ cdom 7953   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  ttukeylem2  9332  ttukeylem6  9336
  Copyright terms: Public domain W3C validator