| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpwwe2lem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for fpwwe2 9465. (Contributed by Mario Carneiro, 19-May-2015.) |
| Ref | Expression |
|---|---|
| fpwwe2.1 |
|
| fpwwe2.2 |
|
| fpwwe2lem4.4 |
|
| Ref | Expression |
|---|---|
| fpwwe2lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2lem4.4 |
. . . . 5
| |
| 2 | fpwwe2.1 |
. . . . . 6
| |
| 3 | fpwwe2.2 |
. . . . . 6
| |
| 4 | 2, 3 | fpwwe2lem2 9454 |
. . . . 5
|
| 5 | 1, 4 | mpbid 222 |
. . . 4
|
| 6 | 5 | simprrd 797 |
. . 3
|
| 7 | sneq 4187 |
. . . . . 6
| |
| 8 | 7 | imaeq2d 5466 |
. . . . 5
|
| 9 | eqeq2 2633 |
. . . . 5
| |
| 10 | 8, 9 | sbceqbid 3442 |
. . . 4
|
| 11 | 10 | rspccva 3308 |
. . 3
|
| 12 | 6, 11 | sylan 488 |
. 2
|
| 13 | cnvimass 5485 |
. . . . 5
| |
| 14 | 2 | relopabi 5245 |
. . . . . . 7
|
| 15 | 14 | brrelex2i 5159 |
. . . . . 6
|
| 16 | dmexg 7097 |
. . . . . 6
| |
| 17 | 1, 15, 16 | 3syl 18 |
. . . . 5
|
| 18 | ssexg 4804 |
. . . . 5
| |
| 19 | 13, 17, 18 | sylancr 695 |
. . . 4
|
| 20 | id 22 |
. . . . . . 7
| |
| 21 | 20 | sqxpeqd 5141 |
. . . . . . . 8
|
| 22 | 21 | ineq2d 3814 |
. . . . . . 7
|
| 23 | 20, 22 | oveq12d 6668 |
. . . . . 6
|
| 24 | 23 | eqeq1d 2624 |
. . . . 5
|
| 25 | 24 | sbcieg 3468 |
. . . 4
|
| 26 | 19, 25 | syl 17 |
. . 3
|
| 27 | 26 | adantr 481 |
. 2
|
| 28 | 12, 27 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: fpwwe2lem8 9459 fpwwe2lem12 9463 fpwwe2lem13 9464 fpwwe2 9465 canthwelem 9472 pwfseqlem4 9484 |
| Copyright terms: Public domain | W3C validator |