MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge0xmulcl Structured version   Visualization version   Unicode version

Theorem ge0xmulcl 12287
Description: The nonnegative extended reals are closed under multiplication. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ge0xmulcl  |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo ) )  ->  ( A xe B )  e.  ( 0 [,] +oo ) )

Proof of Theorem ge0xmulcl
StepHypRef Expression
1 elxrge0 12281 . 2  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  e. 
RR*  /\  0  <_  A ) )
2 elxrge0 12281 . 2  |-  ( B  e.  ( 0 [,] +oo )  <->  ( B  e. 
RR*  /\  0  <_  B ) )
3 xmulcl 12103 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A xe B )  e.  RR* )
43ad2ant2r 783 . . 3  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )
)  ->  ( A xe B )  e.  RR* )
5 xmulge0 12114 . . 3  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )
)  ->  0  <_  ( A xe B ) )
6 elxrge0 12281 . . 3  |-  ( ( A xe B )  e.  ( 0 [,] +oo )  <->  ( ( A xe B )  e.  RR*  /\  0  <_  ( A xe B ) ) )
74, 5, 6sylanbrc 698 . 2  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )
)  ->  ( A xe B )  e.  ( 0 [,] +oo ) )
81, 2, 7syl2anb 496 1  |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  ( 0 [,] +oo ) )  ->  ( A xe B )  e.  ( 0 [,] +oo ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   0cc0 9936   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   xecxmu 11945   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-xmul 11948  df-icc 12182
This theorem is referenced by:  xrge0adddir  29692  xrge0slmod  29844  xrge0mulc1cn  29987  sitmcl  30413
  Copyright terms: Public domain W3C validator