Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0mulc1cn Structured version   Visualization version   Unicode version

Theorem xrge0mulc1cn 29987
Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
xrge0mulc1cn.k  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
xrge0mulc1cn.f  |-  F  =  ( x  e.  ( 0 [,] +oo )  |->  ( x xe C ) )
xrge0mulc1cn.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
Assertion
Ref Expression
xrge0mulc1cn  |-  ( ph  ->  F  e.  ( J  Cn  J ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    F( x)    J( x)

Proof of Theorem xrge0mulc1cn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 xrge0mulc1cn.k . . . . . 6  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
2 letopon 21009 . . . . . . 7  |-  (ordTop `  <_  )  e.  (TopOn `  RR* )
3 iccssxr 12256 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
4 resttopon 20965 . . . . . . 7  |-  ( ( (ordTop `  <_  )  e.  (TopOn `  RR* )  /\  ( 0 [,] +oo )  C_  RR* )  ->  (
(ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  (
0 [,] +oo )
) )
52, 3, 4mp2an 708 . . . . . 6  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  ( 0 [,] +oo ) )
61, 5eqeltri 2697 . . . . 5  |-  J  e.  (TopOn `  ( 0 [,] +oo ) )
76a1i 11 . . . 4  |-  ( C  =  0  ->  J  e.  (TopOn `  ( 0 [,] +oo ) ) )
8 0e0iccpnf 12283 . . . . 5  |-  0  e.  ( 0 [,] +oo )
98a1i 11 . . . 4  |-  ( C  =  0  ->  0  e.  ( 0 [,] +oo ) )
10 simpl 473 . . . . . . . . 9  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  C  =  0 )
1110oveq2d 6666 . . . . . . . 8  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  ( x xe C )  =  ( x xe 0 ) )
12 simpr 477 . . . . . . . . . 10  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  x  e.  ( 0 [,] +oo )
)
133, 12sseldi 3601 . . . . . . . . 9  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  x  e.  RR* )
14 xmul01 12097 . . . . . . . . 9  |-  ( x  e.  RR*  ->  ( x xe 0 )  =  0 )
1513, 14syl 17 . . . . . . . 8  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  ( x xe 0 )  =  0 )
1611, 15eqtrd 2656 . . . . . . 7  |-  ( ( C  =  0  /\  x  e.  ( 0 [,] +oo ) )  ->  ( x xe C )  =  0 )
1716mpteq2dva 4744 . . . . . 6  |-  ( C  =  0  ->  (
x  e.  ( 0 [,] +oo )  |->  ( x xe C ) )  =  ( x  e.  ( 0 [,] +oo )  |->  0 ) )
18 xrge0mulc1cn.f . . . . . 6  |-  F  =  ( x  e.  ( 0 [,] +oo )  |->  ( x xe C ) )
19 fconstmpt 5163 . . . . . 6  |-  ( ( 0 [,] +oo )  X.  { 0 } )  =  ( x  e.  ( 0 [,] +oo )  |->  0 )
2017, 18, 193eqtr4g 2681 . . . . 5  |-  ( C  =  0  ->  F  =  ( ( 0 [,] +oo )  X. 
{ 0 } ) )
21 c0ex 10034 . . . . . 6  |-  0  e.  _V
2221fconst2 6470 . . . . 5  |-  ( F : ( 0 [,] +oo ) --> { 0 }  <-> 
F  =  ( ( 0 [,] +oo )  X.  { 0 } ) )
2320, 22sylibr 224 . . . 4  |-  ( C  =  0  ->  F : ( 0 [,] +oo ) --> { 0 } )
24 cnconst 21088 . . . 4  |-  ( ( ( J  e.  (TopOn `  ( 0 [,] +oo ) )  /\  J  e.  (TopOn `  ( 0 [,] +oo ) ) )  /\  ( 0  e.  ( 0 [,] +oo )  /\  F : ( 0 [,] +oo ) --> { 0 } ) )  ->  F  e.  ( J  Cn  J
) )
257, 7, 9, 23, 24syl22anc 1327 . . 3  |-  ( C  =  0  ->  F  e.  ( J  Cn  J
) )
2625adantl 482 . 2  |-  ( (
ph  /\  C  = 
0 )  ->  F  e.  ( J  Cn  J
) )
27 eqid 2622 . . . . . . . . 9  |-  (ordTop `  <_  )  =  (ordTop `  <_  )
28 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x xe C )  =  ( y xe C ) )
2928cbvmptv 4750 . . . . . . . . 9  |-  ( x  e.  RR*  |->  ( x xe C ) )  =  ( y  e.  RR*  |->  ( y xe C ) )
30 id 22 . . . . . . . . 9  |-  ( C  e.  RR+  ->  C  e.  RR+ )
3127, 29, 30xrmulc1cn 29976 . . . . . . . 8  |-  ( C  e.  RR+  ->  ( x  e.  RR*  |->  ( x xe C ) )  e.  ( (ordTop `  <_  )  Cn  (ordTop ` 
<_  ) ) )
32 letopuni 21011 . . . . . . . . 9  |-  RR*  =  U. (ordTop `  <_  )
3332cnrest 21089 . . . . . . . 8  |-  ( ( ( x  e.  RR*  |->  ( x xe C ) )  e.  ( (ordTop `  <_  )  Cn  (ordTop `  <_  ) )  /\  ( 0 [,] +oo )  C_  RR* )  ->  ( (
x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  e.  ( ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  Cn  (ordTop ` 
<_  ) ) )
3431, 3, 33sylancl 694 . . . . . . 7  |-  ( C  e.  RR+  ->  ( ( x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  e.  ( ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  Cn  (ordTop ` 
<_  ) ) )
35 resmpt 5449 . . . . . . . . 9  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  ( ( x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  =  ( x  e.  ( 0 [,] +oo )  |->  ( x xe C ) ) )
363, 35ax-mp 5 . . . . . . . 8  |-  ( ( x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  =  ( x  e.  ( 0 [,] +oo )  |->  ( x xe C ) )
3736, 18eqtr4i 2647 . . . . . . 7  |-  ( ( x  e.  RR*  |->  ( x xe C ) )  |`  ( 0 [,] +oo ) )  =  F
381eqcomi 2631 . . . . . . . 8  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  =  J
3938oveq1i 6660 . . . . . . 7  |-  ( ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  Cn  (ordTop `  <_  ) )  =  ( J  Cn  (ordTop `  <_  ) )
4034, 37, 393eltr3g 2717 . . . . . 6  |-  ( C  e.  RR+  ->  F  e.  ( J  Cn  (ordTop ` 
<_  ) ) )
412a1i 11 . . . . . . 7  |-  ( C  e.  RR+  ->  (ordTop `  <_  )  e.  (TopOn `  RR* ) )
42 simpr 477 . . . . . . . . . 10  |-  ( ( C  e.  RR+  /\  x  e.  ( 0 [,] +oo ) )  ->  x  e.  ( 0 [,] +oo ) )
43 ioorp 12251 . . . . . . . . . . . 12  |-  ( 0 (,) +oo )  = 
RR+
44 ioossicc 12259 . . . . . . . . . . . 12  |-  ( 0 (,) +oo )  C_  ( 0 [,] +oo )
4543, 44eqsstr3i 3636 . . . . . . . . . . 11  |-  RR+  C_  (
0 [,] +oo )
46 simpl 473 . . . . . . . . . . 11  |-  ( ( C  e.  RR+  /\  x  e.  ( 0 [,] +oo ) )  ->  C  e.  RR+ )
4745, 46sseldi 3601 . . . . . . . . . 10  |-  ( ( C  e.  RR+  /\  x  e.  ( 0 [,] +oo ) )  ->  C  e.  ( 0 [,] +oo ) )
48 ge0xmulcl 12287 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] +oo )  /\  C  e.  ( 0 [,] +oo ) )  ->  ( x xe C )  e.  ( 0 [,] +oo ) )
4942, 47, 48syl2anc 693 . . . . . . . . 9  |-  ( ( C  e.  RR+  /\  x  e.  ( 0 [,] +oo ) )  ->  (
x xe C )  e.  ( 0 [,] +oo ) )
5049, 18fmptd 6385 . . . . . . . 8  |-  ( C  e.  RR+  ->  F :
( 0 [,] +oo )
--> ( 0 [,] +oo ) )
51 frn 6053 . . . . . . . 8  |-  ( F : ( 0 [,] +oo ) --> ( 0 [,] +oo )  ->  ran  F  C_  ( 0 [,] +oo ) )
5250, 51syl 17 . . . . . . 7  |-  ( C  e.  RR+  ->  ran  F  C_  ( 0 [,] +oo ) )
533a1i 11 . . . . . . 7  |-  ( C  e.  RR+  ->  ( 0 [,] +oo )  C_  RR* )
54 cnrest2 21090 . . . . . . 7  |-  ( ( (ordTop `  <_  )  e.  (TopOn `  RR* )  /\  ran  F  C_  ( 0 [,] +oo )  /\  ( 0 [,] +oo )  C_  RR* )  ->  ( F  e.  ( J  Cn  (ordTop `  <_  ) )  <-> 
F  e.  ( J  Cn  ( (ordTop `  <_  )t  ( 0 [,] +oo ) ) ) ) )
5541, 52, 53, 54syl3anc 1326 . . . . . 6  |-  ( C  e.  RR+  ->  ( F  e.  ( J  Cn  (ordTop `  <_  ) )  <->  F  e.  ( J  Cn  ( (ordTop `  <_  )t  ( 0 [,] +oo ) ) ) ) )
5640, 55mpbid 222 . . . . 5  |-  ( C  e.  RR+  ->  F  e.  ( J  Cn  (
(ordTop `  <_  )t  ( 0 [,] +oo ) ) ) )
571oveq2i 6661 . . . . 5  |-  ( J  Cn  J )  =  ( J  Cn  (
(ordTop `  <_  )t  ( 0 [,] +oo ) ) )
5856, 57syl6eleqr 2712 . . . 4  |-  ( C  e.  RR+  ->  F  e.  ( J  Cn  J
) )
5958, 43eleq2s 2719 . . 3  |-  ( C  e.  ( 0 (,) +oo )  ->  F  e.  ( J  Cn  J
) )
6059adantl 482 . 2  |-  ( (
ph  /\  C  e.  ( 0 (,) +oo ) )  ->  F  e.  ( J  Cn  J
) )
61 xrge0mulc1cn.c . . 3  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
62 0xr 10086 . . . 4  |-  0  e.  RR*
63 pnfxr 10092 . . . 4  |- +oo  e.  RR*
64 0ltpnf 11956 . . . 4  |-  0  < +oo
65 elicoelioo 29540 . . . 4  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  < +oo )  ->  ( C  e.  ( 0 [,) +oo )  <->  ( C  =  0  \/  C  e.  ( 0 (,) +oo ) ) ) )
6662, 63, 64, 65mp3an 1424 . . 3  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  =  0  \/  C  e.  ( 0 (,) +oo ) ) )
6761, 66sylib 208 . 2  |-  ( ph  ->  ( C  =  0  \/  C  e.  ( 0 (,) +oo )
) )
6826, 60, 67mpjaodan 827 1  |-  ( ph  ->  F  e.  ( J  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832   xecxmu 11945   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   ↾t crest 16081  ordTopcordt 16159  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833  df-xneg 11946  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-rest 16083  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cnp 21032
This theorem is referenced by:  esummulc1  30143
  Copyright terms: Public domain W3C validator