![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
adantlrl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | adantl2.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylanl2 683 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: omlimcl 7658 odi 7659 oelim2 7675 mapxpen 8126 unwdomg 8489 dfac12lem2 8966 infunsdom 9036 fin1a2s 9236 frlmup1 20137 fbasrn 21688 lmmbr 23056 grporcan 27372 unoplin 28779 hmoplin 28801 superpos 29213 subfacp1lem5 31166 matunitlindflem1 33405 poimirlem4 33413 itg2addnclem 33461 ftc1anclem6 33490 fdc 33541 ismtyres 33607 isdrngo2 33757 rngohomco 33773 rngoisocnv 33780 dssmapnvod 38314 climxrrelem 39981 dvdsn1add 40154 dvnprodlem1 40161 stoweidlem27 40244 fourierdlem97 40420 qndenserrnbllem 40514 sge0iunmptlemfi 40630 |
Copyright terms: Public domain | W3C validator |