Proof of Theorem frlmgsum
Step | Hyp | Ref
| Expression |
1 | | frlmgsum.r |
. . . 4
   |
2 | | frlmgsum.i |
. . . 4
   |
3 | | frlmgsum.y |
. . . . 5
 freeLMod
  |
4 | | frlmgsum.b |
. . . . 5
     |
5 | 3, 4 | frlmpws 20094 |
. . . 4
     ringLMod  s  ↾s    |
6 | 1, 2, 5 | syl2anc 693 |
. . 3
   ringLMod  s 
↾s    |
7 | 6 | oveq1d 6665 |
. 2
  g         ringLMod  s 
↾s  g        |
8 | | eqid 2622 |
. . 3
    ringLMod  s       ringLMod  s    |
9 | | eqid 2622 |
. . 3
   ringLMod  s      ringLMod  s    |
10 | | eqid 2622 |
. . 3
  ringLMod  s 
↾s    ringLMod  s 
↾s   |
11 | | ovexd 6680 |
. . 3
  ringLMod  s    |
12 | | frlmgsum.j |
. . 3
   |
13 | | eqid 2622 |
. . . . . 6
    ringLMod  s       ringLMod  s    |
14 | 3, 4, 13 | frlmlss 20095 |
. . . . 5
       ringLMod  s     |
15 | 1, 2, 14 | syl2anc 693 |
. . . 4
     ringLMod  s     |
16 | 8, 13 | lssss 18937 |
. . . 4
     ringLMod  s       ringLMod  s     |
17 | 15, 16 | syl 17 |
. . 3

    ringLMod  s     |
18 | | frlmgsum.f |
. . . 4
 
     |
19 | | eqid 2622 |
. . . 4
         |
20 | 18, 19 | fmptd 6385 |
. . 3
           |
21 | | rlmlmod 19205 |
. . . . . 6

ringLMod    |
22 | 1, 21 | syl 17 |
. . . . 5
 ringLMod    |
23 | | eqid 2622 |
. . . . . 6
 ringLMod  s   ringLMod  s   |
24 | 23 | pwslmod 18970 |
. . . . 5
  ringLMod 
  ringLMod  s    |
25 | 22, 2, 24 | syl2anc 693 |
. . . 4
  ringLMod  s    |
26 | | eqid 2622 |
. . . . 5
    ringLMod  s       ringLMod  s    |
27 | 26, 13 | lss0cl 18947 |
. . . 4
   ringLMod  s      ringLMod  s        ringLMod  s     |
28 | 25, 15, 27 | syl2anc 693 |
. . 3
     ringLMod  s     |
29 | | lmodcmn 18911 |
. . . . . . 7
 ringLMod  ringLMod  CMnd |
30 | 22, 29 | syl 17 |
. . . . . 6
 ringLMod  CMnd |
31 | | cmnmnd 18208 |
. . . . . 6
 ringLMod  CMnd ringLMod    |
32 | 30, 31 | syl 17 |
. . . . 5
 ringLMod    |
33 | 23 | pwsmnd 17325 |
. . . . 5
  ringLMod    ringLMod  s    |
34 | 32, 2, 33 | syl2anc 693 |
. . . 4
  ringLMod  s    |
35 | 8, 9, 26 | mndlrid 17310 |
. . . 4
   ringLMod  s      ringLMod  s          ringLMod  s       ringLMod  s          ringLMod  s        ringLMod  s       |
36 | 34, 35 | sylan 488 |
. . 3
 
    ringLMod  s          ringLMod  s       ringLMod  s          ringLMod  s        ringLMod  s       |
37 | 8, 9, 10, 11, 12, 17, 20, 28, 36 | gsumress 17276 |
. 2
   ringLMod  s  g         ringLMod  s 
↾s  g        |
38 | | rlmbas 19195 |
. . . 4
       ringLMod    |
39 | 2 | adantr 481 |
. . . . . . . . 9
 
   |
40 | | eqid 2622 |
. . . . . . . . . 10
         |
41 | 3, 40, 4 | frlmbasf 20104 |
. . . . . . . . 9
  
 

           |
42 | 39, 18, 41 | syl2anc 693 |
. . . . . . . 8
 
             |
43 | | eqid 2622 |
. . . . . . . . 9
     |
44 | 43 | fmpt 6381 |
. . . . . . . 8
 
                |
45 | 42, 44 | sylibr 224 |
. . . . . . 7
 
 
      |
46 | 45 | r19.21bi 2932 |
. . . . . 6
           |
47 | 46 | an32s 846 |
. . . . 5
           |
48 | 47 | anasss 679 |
. . . 4
 

 
      |
49 | | frlmgsum.w |
. . . . 5
     finSupp  |
50 | | frlmgsum.z |
. . . . . 6
     |
51 | 6 | fveq2d 6195 |
. . . . . . 7
          ringLMod  s  ↾s     |
52 | 13 | lsssubg 18957 |
. . . . . . . . 9
   ringLMod  s      ringLMod  s    SubGrp  ringLMod  s     |
53 | 25, 15, 52 | syl2anc 693 |
. . . . . . . 8
 SubGrp  ringLMod  s     |
54 | 10, 26 | subg0 17600 |
. . . . . . . 8
 SubGrp  ringLMod  s       ringLMod  s        ringLMod  s 
↾s     |
55 | 53, 54 | syl 17 |
. . . . . . 7
     ringLMod  s        ringLMod  s 
↾s     |
56 | 51, 55 | eqtr4d 2659 |
. . . . . 6
         ringLMod  s     |
57 | 50, 56 | syl5eq 2668 |
. . . . 5
     ringLMod  s     |
58 | 49, 57 | breqtrd 4679 |
. . . 4
     finSupp     ringLMod  s     |
59 | 23, 38, 26, 2, 12, 30, 48, 58 | pwsgsum 18378 |
. . 3
   ringLMod  s  g        ringLMod  g       |
60 | | mptexg 6484 |
. . . . . 6
     |
61 | 12, 60 | syl 17 |
. . . . 5
     |
62 | | fvexd 6203 |
. . . . 5
 ringLMod    |
63 | 38 | a1i 11 |
. . . . 5
        ringLMod     |
64 | | rlmplusg 19196 |
. . . . . 6
     ringLMod    |
65 | 64 | a1i 11 |
. . . . 5
      ringLMod     |
66 | 61, 1, 62, 63, 65 | gsumpropd 17272 |
. . . 4
  g     ringLMod  g      |
67 | 66 | mpteq2dv 4745 |
. . 3
   g       ringLMod  g       |
68 | 59, 67 | eqtr4d 2659 |
. 2
   ringLMod  s  g        g       |
69 | 7, 37, 68 | 3eqtr2d 2662 |
1
  g        g       |