| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmoplin | Structured version Visualization version Unicode version | ||
| Description: A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmoplin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf 28733 |
. 2
| |
| 2 | simplll 798 |
. . . . . . . 8
| |
| 3 | hvmulcl 27870 |
. . . . . . . . . . 11
| |
| 4 | hvaddcl 27869 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | sylan 488 |
. . . . . . . . . 10
|
| 6 | 5 | adantll 750 |
. . . . . . . . 9
|
| 7 | 6 | adantr 481 |
. . . . . . . 8
|
| 8 | simpr 477 |
. . . . . . . 8
| |
| 9 | hmop 28781 |
. . . . . . . . 9
| |
| 10 | 9 | eqcomd 2628 |
. . . . . . . 8
|
| 11 | 2, 7, 8, 10 | syl3anc 1326 |
. . . . . . 7
|
| 12 | simprl 794 |
. . . . . . . . 9
| |
| 13 | 12 | ad2antrr 762 |
. . . . . . . 8
|
| 14 | simprr 796 |
. . . . . . . . 9
| |
| 15 | 14 | ad2antrr 762 |
. . . . . . . 8
|
| 16 | simplr 792 |
. . . . . . . 8
| |
| 17 | 1 | ffvelrnda 6359 |
. . . . . . . . . 10
|
| 18 | 17 | adantlr 751 |
. . . . . . . . 9
|
| 19 | 18 | adantllr 755 |
. . . . . . . 8
|
| 20 | hiassdi 27948 |
. . . . . . . 8
| |
| 21 | 13, 15, 16, 19, 20 | syl22anc 1327 |
. . . . . . 7
|
| 22 | 1 | ffvelrnda 6359 |
. . . . . . . . . . 11
|
| 23 | 22 | adantrl 752 |
. . . . . . . . . 10
|
| 24 | 23 | ad2antrr 762 |
. . . . . . . . 9
|
| 25 | 1 | ffvelrnda 6359 |
. . . . . . . . . . 11
|
| 26 | 25 | adantr 481 |
. . . . . . . . . 10
|
| 27 | 26 | adantllr 755 |
. . . . . . . . 9
|
| 28 | hiassdi 27948 |
. . . . . . . . 9
| |
| 29 | 13, 24, 27, 8, 28 | syl22anc 1327 |
. . . . . . . 8
|
| 30 | hmop 28781 |
. . . . . . . . . . . . . 14
| |
| 31 | 30 | eqcomd 2628 |
. . . . . . . . . . . . 13
|
| 32 | 31 | 3expa 1265 |
. . . . . . . . . . . 12
|
| 33 | 32 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 34 | 33 | adantlrl 756 |
. . . . . . . . . 10
|
| 35 | 34 | adantlr 751 |
. . . . . . . . 9
|
| 36 | hmop 28781 |
. . . . . . . . . . . 12
| |
| 37 | 36 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 38 | 37 | 3expa 1265 |
. . . . . . . . . 10
|
| 39 | 38 | adantllr 755 |
. . . . . . . . 9
|
| 40 | 35, 39 | oveq12d 6668 |
. . . . . . . 8
|
| 41 | 29, 40 | eqtr2d 2657 |
. . . . . . 7
|
| 42 | 11, 21, 41 | 3eqtrd 2660 |
. . . . . 6
|
| 43 | 42 | ralrimiva 2966 |
. . . . 5
|
| 44 | ffvelrn 6357 |
. . . . . . . . 9
| |
| 45 | 5, 44 | sylan2 491 |
. . . . . . . 8
|
| 46 | 45 | anassrs 680 |
. . . . . . 7
|
| 47 | ffvelrn 6357 |
. . . . . . . . . . 11
| |
| 48 | hvmulcl 27870 |
. . . . . . . . . . 11
| |
| 49 | 47, 48 | sylan2 491 |
. . . . . . . . . 10
|
| 50 | 49 | an12s 843 |
. . . . . . . . 9
|
| 51 | 50 | adantr 481 |
. . . . . . . 8
|
| 52 | ffvelrn 6357 |
. . . . . . . . 9
| |
| 53 | 52 | adantlr 751 |
. . . . . . . 8
|
| 54 | hvaddcl 27869 |
. . . . . . . 8
| |
| 55 | 51, 53, 54 | syl2anc 693 |
. . . . . . 7
|
| 56 | hial2eq 27963 |
. . . . . . 7
| |
| 57 | 46, 55, 56 | syl2anc 693 |
. . . . . 6
|
| 58 | 1, 57 | sylanl1 682 |
. . . . 5
|
| 59 | 43, 58 | mpbid 222 |
. . . 4
|
| 60 | 59 | ralrimiva 2966 |
. . 3
|
| 61 | 60 | ralrimivva 2971 |
. 2
|
| 62 | ellnop 28717 |
. 2
| |
| 63 | 1, 61, 62 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his2 27940 ax-his3 27941 ax-his4 27942 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-sub 10268 df-neg 10269 df-hvsub 27828 df-lnop 28700 df-hmop 28703 |
| This theorem is referenced by: 0lnop 28843 hmopbdoptHIL 28847 leoptri 28995 leopnmid 28997 nmopleid 28998 opsqrlem1 28999 opsqrlem6 29004 pjlnopi 29006 hmopidmchi 29010 hmopidmpji 29011 |
| Copyright terms: Public domain | W3C validator |