HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmops Structured version   Visualization version   Unicode version

Theorem hmops 28879
Description: The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmops  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  ->  ( T  +op  U )  e. 
HrmOp )

Proof of Theorem hmops
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 28733 . . 3  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
2 hmopf 28733 . . 3  |-  ( U  e.  HrmOp  ->  U : ~H
--> ~H )
3 hoaddcl 28617 . . 3  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( T  +op  U
) : ~H --> ~H )
41, 2, 3syl2an 494 . 2  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  ->  ( T  +op  U ) : ~H --> ~H )
5 hmop 28781 . . . . . . 7  |-  ( ( T  e.  HrmOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
x  .ih  ( T `  y ) )  =  ( ( T `  x )  .ih  y
) )
653expb 1266 . . . . . 6  |-  ( ( T  e.  HrmOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( T `  y
) )  =  ( ( T `  x
)  .ih  y )
)
7 hmop 28781 . . . . . . 7  |-  ( ( U  e.  HrmOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
x  .ih  ( U `  y ) )  =  ( ( U `  x )  .ih  y
) )
873expb 1266 . . . . . 6  |-  ( ( U  e.  HrmOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( U `  y
) )  =  ( ( U `  x
)  .ih  y )
)
96, 8oveqan12d 6669 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  /\  ( U  e.  HrmOp  /\  ( x  e.  ~H  /\  y  e. 
~H ) ) )  ->  ( ( x 
.ih  ( T `  y ) )  +  ( x  .ih  ( U `  y )
) )  =  ( ( ( T `  x )  .ih  y
)  +  ( ( U `  x ) 
.ih  y ) ) )
109anandirs 874 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
x  .ih  ( T `  y ) )  +  ( x  .ih  ( U `  y )
) )  =  ( ( ( T `  x )  .ih  y
)  +  ( ( U `  x ) 
.ih  y ) ) )
111, 2anim12i 590 . . . . 5  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  ->  ( T : ~H --> ~H  /\  U : ~H --> ~H )
)
12 hosval 28599 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  y  e.  ~H )  ->  ( ( T  +op  U ) `  y )  =  ( ( T `
 y )  +h  ( U `  y
) ) )
1312oveq2d 6666 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  y  e.  ~H )  ->  ( x  .ih  (
( T  +op  U
) `  y )
)  =  ( x 
.ih  ( ( T `
 y )  +h  ( U `  y
) ) ) )
14133expa 1265 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  y  e.  ~H )  ->  (
x  .ih  ( ( T  +op  U ) `  y ) )  =  ( x  .ih  (
( T `  y
)  +h  ( U `
 y ) ) ) )
1514adantrl 752 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  +op  U ) `  y ) )  =  ( x 
.ih  ( ( T `
 y )  +h  ( U `  y
) ) ) )
16 simprl 794 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  x  e.  ~H )
17 ffvelrn 6357 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  y  e.  ~H )  ->  ( T `  y
)  e.  ~H )
1817ad2ant2rl 785 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( T `  y )  e.  ~H )
19 ffvelrn 6357 . . . . . . . 8  |-  ( ( U : ~H --> ~H  /\  y  e.  ~H )  ->  ( U `  y
)  e.  ~H )
2019ad2ant2l 782 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( U `  y )  e.  ~H )
21 his7 27947 . . . . . . 7  |-  ( ( x  e.  ~H  /\  ( T `  y )  e.  ~H  /\  ( U `  y )  e.  ~H )  ->  (
x  .ih  ( ( T `  y )  +h  ( U `  y
) ) )  =  ( ( x  .ih  ( T `  y ) )  +  ( x 
.ih  ( U `  y ) ) ) )
2216, 18, 20, 21syl3anc 1326 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T `  y )  +h  ( U `  y )
) )  =  ( ( x  .ih  ( T `  y )
)  +  ( x 
.ih  ( U `  y ) ) ) )
2315, 22eqtrd 2656 . . . . 5  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  +op  U ) `  y ) )  =  ( ( x  .ih  ( T `
 y ) )  +  ( x  .ih  ( U `  y ) ) ) )
2411, 23sylan 488 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  +op  U ) `  y ) )  =  ( ( x  .ih  ( T `
 y ) )  +  ( x  .ih  ( U `  y ) ) ) )
25 hosval 28599 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( T  +op  U ) `  x )  =  ( ( T `
 x )  +h  ( U `  x
) ) )
2625oveq1d 6665 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( T 
+op  U ) `  x )  .ih  y
)  =  ( ( ( T `  x
)  +h  ( U `
 x ) ) 
.ih  y ) )
27263expa 1265 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  (
( ( T  +op  U ) `  x ) 
.ih  y )  =  ( ( ( T `
 x )  +h  ( U `  x
) )  .ih  y
) )
2827adantrr 753 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( T  +op  U
) `  x )  .ih  y )  =  ( ( ( T `  x )  +h  ( U `  x )
)  .ih  y )
)
29 ffvelrn 6357 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
3029ad2ant2r 783 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( T `  x )  e.  ~H )
31 ffvelrn 6357 . . . . . . . 8  |-  ( ( U : ~H --> ~H  /\  x  e.  ~H )  ->  ( U `  x
)  e.  ~H )
3231ad2ant2lr 784 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( U `  x )  e.  ~H )
33 simprr 796 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  y  e.  ~H )
34 ax-his2 27940 . . . . . . 7  |-  ( ( ( T `  x
)  e.  ~H  /\  ( U `  x )  e.  ~H  /\  y  e.  ~H )  ->  (
( ( T `  x )  +h  ( U `  x )
)  .ih  y )  =  ( ( ( T `  x ) 
.ih  y )  +  ( ( U `  x )  .ih  y
) ) )
3530, 32, 33, 34syl3anc 1326 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( T `  x
)  +h  ( U `
 x ) ) 
.ih  y )  =  ( ( ( T `
 x )  .ih  y )  +  ( ( U `  x
)  .ih  y )
) )
3628, 35eqtrd 2656 . . . . 5  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( T  +op  U
) `  x )  .ih  y )  =  ( ( ( T `  x )  .ih  y
)  +  ( ( U `  x ) 
.ih  y ) ) )
3711, 36sylan 488 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( T  +op  U
) `  x )  .ih  y )  =  ( ( ( T `  x )  .ih  y
)  +  ( ( U `  x ) 
.ih  y ) ) )
3810, 24, 373eqtr4d 2666 . . 3  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  +op  U ) `  y ) )  =  ( ( ( T  +op  U
) `  x )  .ih  y ) )
3938ralrimivva 2971 . 2  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  ->  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( ( T  +op  U ) `  y ) )  =  ( ( ( T  +op  U
) `  x )  .ih  y ) )
40 elhmop 28732 . 2  |-  ( ( T  +op  U )  e.  HrmOp 
<->  ( ( T  +op  U ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( ( T  +op  U ) `  y ) )  =  ( ( ( T 
+op  U ) `  x )  .ih  y
) ) )
414, 39, 40sylanbrc 698 1  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  ->  ( T  +op  U )  e. 
HrmOp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650    + caddc 9939   ~Hchil 27776    +h cva 27777    .ih csp 27779    +op chos 27795   HrmOpcho 27807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hfi 27936  ax-his1 27939  ax-his2 27940
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hosum 28589  df-hmop 28703
This theorem is referenced by:  hmopd  28881  leopadd  28991  opsqrlem4  29002
  Copyright terms: Public domain W3C validator