| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hsphoif | Structured version Visualization version Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| hsphoif.h |
|
| hsphoif.a |
|
| hsphoif.x |
|
| hsphoif.b |
|
| Ref | Expression |
|---|---|
| hsphoif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hsphoif.b |
. . . . 5
| |
| 2 | 1 | ffvelrnda 6359 |
. . . 4
|
| 3 | hsphoif.a |
. . . . . 6
| |
| 4 | 3 | adantr 481 |
. . . . 5
|
| 5 | 2, 4 | ifcld 4131 |
. . . 4
|
| 6 | 2, 5 | ifcld 4131 |
. . 3
|
| 7 | eqid 2622 |
. . 3
| |
| 8 | 6, 7 | fmptd 6385 |
. 2
|
| 9 | hsphoif.h |
. . . . . 6
| |
| 10 | 9 | a1i 11 |
. . . . 5
|
| 11 | breq2 4657 |
. . . . . . . . . 10
| |
| 12 | id 22 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | ifbieq2d 4111 |
. . . . . . . . 9
|
| 14 | 13 | ifeq2d 4105 |
. . . . . . . 8
|
| 15 | 14 | mpteq2dv 4745 |
. . . . . . 7
|
| 16 | 15 | mpteq2dv 4745 |
. . . . . 6
|
| 17 | 16 | adantl 482 |
. . . . 5
|
| 18 | ovex 6678 |
. . . . . . 7
| |
| 19 | 18 | mptex 6486 |
. . . . . 6
|
| 20 | 19 | a1i 11 |
. . . . 5
|
| 21 | 10, 17, 3, 20 | fvmptd 6288 |
. . . 4
|
| 22 | fveq1 6190 |
. . . . . . 7
| |
| 23 | 22 | breq1d 4663 |
. . . . . . . 8
|
| 24 | 23, 22 | ifbieq1d 4109 |
. . . . . . 7
|
| 25 | 22, 24 | ifeq12d 4106 |
. . . . . 6
|
| 26 | 25 | mpteq2dv 4745 |
. . . . 5
|
| 27 | 26 | adantl 482 |
. . . 4
|
| 28 | reex 10027 |
. . . . . . . 8
| |
| 29 | 28 | a1i 11 |
. . . . . . 7
|
| 30 | hsphoif.x |
. . . . . . 7
| |
| 31 | 29, 30 | jca 554 |
. . . . . 6
|
| 32 | elmapg 7870 |
. . . . . 6
| |
| 33 | 31, 32 | syl 17 |
. . . . 5
|
| 34 | 1, 33 | mpbird 247 |
. . . 4
|
| 35 | mptexg 6484 |
. . . . 5
| |
| 36 | 30, 35 | syl 17 |
. . . 4
|
| 37 | 21, 27, 34, 36 | fvmptd 6288 |
. . 3
|
| 38 | 37 | feq1d 6030 |
. 2
|
| 39 | 8, 38 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 |
| This theorem is referenced by: hsphoidmvle2 40799 hsphoidmvle 40800 sge0hsphoire 40803 hoidmvlelem1 40809 hoidmvlelem2 40810 hoidmvlelem4 40812 hspmbllem1 40840 hspmbllem2 40841 |
| Copyright terms: Public domain | W3C validator |