Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval Structured version   Visualization version   Unicode version

Theorem hoidmvval 40791
Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval.l  |-  L  =  ( x  e.  Fin  |->  ( a  e.  ( RR  ^m  x ) ,  b  e.  ( RR  ^m  x ) 
|->  if ( x  =  (/) ,  0 ,  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) ) ) )
hoidmvval.a  |-  ( ph  ->  A : X --> RR )
hoidmvval.b  |-  ( ph  ->  B : X --> RR )
hoidmvval.x  |-  ( ph  ->  X  e.  Fin )
Assertion
Ref Expression
hoidmvval  |-  ( ph  ->  ( A ( L `
 X ) B )  =  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( A `  k ) [,) ( B `  k ) ) ) ) )
Distinct variable groups:    x, k    A, a, b, k    B, a, b, k    X, a, b, k, x    ph, a,
b, x
Allowed substitution hints:    ph( k)    A( x)    B( x)    L( x, k, a, b)

Proof of Theorem hoidmvval
StepHypRef Expression
1 hoidmvval.l . . . 4  |-  L  =  ( x  e.  Fin  |->  ( a  e.  ( RR  ^m  x ) ,  b  e.  ( RR  ^m  x ) 
|->  if ( x  =  (/) ,  0 ,  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) ) ) )
21a1i 11 . . 3  |-  ( ph  ->  L  =  ( x  e.  Fin  |->  ( a  e.  ( RR  ^m  x ) ,  b  e.  ( RR  ^m  x )  |->  if ( x  =  (/) ,  0 ,  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) ( b `  k ) ) ) ) ) ) )
3 oveq2 6658 . . . . 5  |-  ( x  =  X  ->  ( RR  ^m  x )  =  ( RR  ^m  X
) )
4 eqeq1 2626 . . . . . 6  |-  ( x  =  X  ->  (
x  =  (/)  <->  X  =  (/) ) )
5 prodeq1 14639 . . . . . 6  |-  ( x  =  X  ->  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) (
b `  k )
) )  =  prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) )
64, 5ifbieq2d 4111 . . . . 5  |-  ( x  =  X  ->  if ( x  =  (/) ,  0 ,  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) ( b `  k ) ) ) )  =  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) ( b `  k ) ) ) ) )
73, 3, 6mpt2eq123dv 6717 . . . 4  |-  ( x  =  X  ->  (
a  e.  ( RR 
^m  x ) ,  b  e.  ( RR 
^m  x )  |->  if ( x  =  (/) ,  0 ,  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) ) )  =  ( a  e.  ( RR  ^m  X
) ,  b  e.  ( RR  ^m  X
)  |->  if ( X  =  (/) ,  0 , 
prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) ( b `  k ) ) ) ) ) )
87adantl 482 . . 3  |-  ( (
ph  /\  x  =  X )  ->  (
a  e.  ( RR 
^m  x ) ,  b  e.  ( RR 
^m  x )  |->  if ( x  =  (/) ,  0 ,  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) ) )  =  ( a  e.  ( RR  ^m  X
) ,  b  e.  ( RR  ^m  X
)  |->  if ( X  =  (/) ,  0 , 
prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) ( b `  k ) ) ) ) ) )
9 hoidmvval.x . . 3  |-  ( ph  ->  X  e.  Fin )
10 ovex 6678 . . . . 5  |-  ( RR 
^m  X )  e. 
_V
1110, 10mpt2ex 7247 . . . 4  |-  ( a  e.  ( RR  ^m  X ) ,  b  e.  ( RR  ^m  X )  |->  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) ( b `  k ) ) ) ) )  e.  _V
1211a1i 11 . . 3  |-  ( ph  ->  ( a  e.  ( RR  ^m  X ) ,  b  e.  ( RR  ^m  X ) 
|->  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) ) )  e.  _V )
132, 8, 9, 12fvmptd 6288 . 2  |-  ( ph  ->  ( L `  X
)  =  ( a  e.  ( RR  ^m  X ) ,  b  e.  ( RR  ^m  X )  |->  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) ( b `  k ) ) ) ) ) )
14 fveq1 6190 . . . . . . . 8  |-  ( a  =  A  ->  (
a `  k )  =  ( A `  k ) )
1514adantr 481 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a `  k
)  =  ( A `
 k ) )
16 fveq1 6190 . . . . . . . 8  |-  ( b  =  B  ->  (
b `  k )  =  ( B `  k ) )
1716adantl 482 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( b `  k
)  =  ( B `
 k ) )
1815, 17oveq12d 6668 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( a `  k ) [,) (
b `  k )
)  =  ( ( A `  k ) [,) ( B `  k ) ) )
1918fveq2d 6195 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( vol `  (
( a `  k
) [,) ( b `
 k ) ) )  =  ( vol `  ( ( A `  k ) [,) ( B `  k )
) ) )
2019prodeq2ad 39824 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) ( b `  k ) ) )  =  prod_ k  e.  X  ( vol `  ( ( A `  k ) [,) ( B `  k ) ) ) )
2120ifeq2d 4105 . . 3  |-  ( ( a  =  A  /\  b  =  B )  ->  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) )  =  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( A `  k ) [,) ( B `  k )
) ) ) )
2221adantl 482 . 2  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B ) )  ->  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) )  =  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( A `  k ) [,) ( B `  k )
) ) ) )
23 hoidmvval.a . . 3  |-  ( ph  ->  A : X --> RR )
24 reex 10027 . . . . 5  |-  RR  e.  _V
2524a1i 11 . . . 4  |-  ( ph  ->  RR  e.  _V )
26 elmapg 7870 . . . 4  |-  ( ( RR  e.  _V  /\  X  e.  Fin )  ->  ( A  e.  ( RR  ^m  X )  <-> 
A : X --> RR ) )
2725, 9, 26syl2anc 693 . . 3  |-  ( ph  ->  ( A  e.  ( RR  ^m  X )  <-> 
A : X --> RR ) )
2823, 27mpbird 247 . 2  |-  ( ph  ->  A  e.  ( RR 
^m  X ) )
29 hoidmvval.b . . 3  |-  ( ph  ->  B : X --> RR )
30 elmapg 7870 . . . 4  |-  ( ( RR  e.  _V  /\  X  e.  Fin )  ->  ( B  e.  ( RR  ^m  X )  <-> 
B : X --> RR ) )
3125, 9, 30syl2anc 693 . . 3  |-  ( ph  ->  ( B  e.  ( RR  ^m  X )  <-> 
B : X --> RR ) )
3229, 31mpbird 247 . 2  |-  ( ph  ->  B  e.  ( RR 
^m  X ) )
33 c0ex 10034 . . . 4  |-  0  e.  _V
34 prodex 14637 . . . 4  |-  prod_ k  e.  X  ( vol `  ( ( A `  k ) [,) ( B `  k )
) )  e.  _V
3533, 34ifex 4156 . . 3  |-  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( A `  k ) [,) ( B `  k ) ) ) )  e.  _V
3635a1i 11 . 2  |-  ( ph  ->  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( A `  k ) [,) ( B `  k )
) ) )  e. 
_V )
3713, 22, 28, 32, 36ovmpt2d 6788 1  |-  ( ph  ->  ( A ( L `
 X ) B )  =  if ( X  =  (/) ,  0 ,  prod_ k  e.  X  ( vol `  ( ( A `  k ) [,) ( B `  k ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ifcif 4086    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Fincfn 7955   RRcr 9935   0cc0 9936   [,)cico 12177   prod_cprod 14635   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-prod 14636
This theorem is referenced by:  hoidmvcl  40796  hoidmv0val  40797  hoidmvn0val  40798  hsphoidmvle  40800
  Copyright terms: Public domain W3C validator