| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hsphoidmvle2 | Structured version Visualization version Unicode version | ||
| Description: The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| hsphoidmvle2.l |
|
| hsphoidmvle2.x |
|
| hsphoidmvle2.z |
|
| hsphoidmvle2.y |
|
| hsphoidmvle2.c |
|
| hsphoidmvle2.d |
|
| hsphoidmvle2.e |
|
| hsphoidmvle2.h |
|
| hsphoidmvle2.a |
|
| hsphoidmvle2.b |
|
| Ref | Expression |
|---|---|
| hsphoidmvle2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hsphoidmvle2.a |
. . . . 5
| |
| 2 | hsphoidmvle2.z |
. . . . . 6
| |
| 3 | 2 | eldifad 3586 |
. . . . 5
|
| 4 | 1, 3 | ffvelrnd 6360 |
. . . 4
|
| 5 | hsphoidmvle2.b |
. . . . . 6
| |
| 6 | 5, 3 | ffvelrnd 6360 |
. . . . 5
|
| 7 | hsphoidmvle2.c |
. . . . 5
| |
| 8 | 6, 7 | ifcld 4131 |
. . . 4
|
| 9 | volicore 40795 |
. . . 4
| |
| 10 | 4, 8, 9 | syl2anc 693 |
. . 3
|
| 11 | hsphoidmvle2.d |
. . . . 5
| |
| 12 | 6, 11 | ifcld 4131 |
. . . 4
|
| 13 | volicore 40795 |
. . . 4
| |
| 14 | 4, 12, 13 | syl2anc 693 |
. . 3
|
| 15 | hsphoidmvle2.x |
. . . . 5
| |
| 16 | difssd 3738 |
. . . . 5
| |
| 17 | ssfi 8180 |
. . . . 5
| |
| 18 | 15, 16, 17 | syl2anc 693 |
. . . 4
|
| 19 | eldifi 3732 |
. . . . . 6
| |
| 20 | 19 | adantl 482 |
. . . . 5
|
| 21 | 1 | ffvelrnda 6359 |
. . . . . 6
|
| 22 | 5 | ffvelrnda 6359 |
. . . . . 6
|
| 23 | volicore 40795 |
. . . . . 6
| |
| 24 | 21, 22, 23 | syl2anc 693 |
. . . . 5
|
| 25 | 20, 24 | syldan 487 |
. . . 4
|
| 26 | 18, 25 | fprodrecl 14683 |
. . 3
|
| 27 | nfv 1843 |
. . . 4
| |
| 28 | 20, 21 | syldan 487 |
. . . . . 6
|
| 29 | 20, 22 | syldan 487 |
. . . . . . 7
|
| 30 | 29 | rexrd 10089 |
. . . . . 6
|
| 31 | icombl 23332 |
. . . . . 6
| |
| 32 | 28, 30, 31 | syl2anc 693 |
. . . . 5
|
| 33 | volge0 40177 |
. . . . 5
| |
| 34 | 32, 33 | syl 17 |
. . . 4
|
| 35 | 27, 18, 25, 34 | fprodge0 14724 |
. . 3
|
| 36 | 8 | rexrd 10089 |
. . . . 5
|
| 37 | icombl 23332 |
. . . . 5
| |
| 38 | 4, 36, 37 | syl2anc 693 |
. . . 4
|
| 39 | 12 | rexrd 10089 |
. . . . 5
|
| 40 | icombl 23332 |
. . . . 5
| |
| 41 | 4, 39, 40 | syl2anc 693 |
. . . 4
|
| 42 | 4 | rexrd 10089 |
. . . . 5
|
| 43 | 4 | leidd 10594 |
. . . . 5
|
| 44 | 6 | leidd 10594 |
. . . . . . . 8
|
| 45 | 44 | adantr 481 |
. . . . . . 7
|
| 46 | iftrue 4092 |
. . . . . . . . 9
| |
| 47 | 46 | adantl 482 |
. . . . . . . 8
|
| 48 | 6 | adantr 481 |
. . . . . . . . . 10
|
| 49 | 7 | adantr 481 |
. . . . . . . . . 10
|
| 50 | 11 | adantr 481 |
. . . . . . . . . 10
|
| 51 | simpr 477 |
. . . . . . . . . 10
| |
| 52 | hsphoidmvle2.e |
. . . . . . . . . . 11
| |
| 53 | 52 | adantr 481 |
. . . . . . . . . 10
|
| 54 | 48, 49, 50, 51, 53 | letrd 10194 |
. . . . . . . . 9
|
| 55 | 54 | iftrued 4094 |
. . . . . . . 8
|
| 56 | 47, 55 | breq12d 4666 |
. . . . . . 7
|
| 57 | 45, 56 | mpbird 247 |
. . . . . 6
|
| 58 | simpl 473 |
. . . . . . . 8
| |
| 59 | simpr 477 |
. . . . . . . . 9
| |
| 60 | 58, 7 | syl 17 |
. . . . . . . . . 10
|
| 61 | 58, 6 | syl 17 |
. . . . . . . . . 10
|
| 62 | 60, 61 | ltnled 10184 |
. . . . . . . . 9
|
| 63 | 59, 62 | mpbird 247 |
. . . . . . . 8
|
| 64 | 7 | adantr 481 |
. . . . . . . . . . . 12
|
| 65 | 6 | adantr 481 |
. . . . . . . . . . . 12
|
| 66 | simpr 477 |
. . . . . . . . . . . 12
| |
| 67 | 64, 65, 66 | ltled 10185 |
. . . . . . . . . . 11
|
| 68 | 67 | adantr 481 |
. . . . . . . . . 10
|
| 69 | iftrue 4092 |
. . . . . . . . . . . 12
| |
| 70 | 69 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 71 | 70 | adantl 482 |
. . . . . . . . . 10
|
| 72 | 68, 71 | breqtrd 4679 |
. . . . . . . . 9
|
| 73 | 52 | ad2antrr 762 |
. . . . . . . . . 10
|
| 74 | iffalse 4095 |
. . . . . . . . . . . 12
| |
| 75 | 74 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 76 | 75 | adantl 482 |
. . . . . . . . . 10
|
| 77 | 73, 76 | breqtrd 4679 |
. . . . . . . . 9
|
| 78 | 72, 77 | pm2.61dan 832 |
. . . . . . . 8
|
| 79 | 58, 63, 78 | syl2anc 693 |
. . . . . . 7
|
| 80 | iffalse 4095 |
. . . . . . . . 9
| |
| 81 | 80 | adantl 482 |
. . . . . . . 8
|
| 82 | 81 | breq1d 4663 |
. . . . . . 7
|
| 83 | 79, 82 | mpbird 247 |
. . . . . 6
|
| 84 | 57, 83 | pm2.61dan 832 |
. . . . 5
|
| 85 | icossico 12243 |
. . . . 5
| |
| 86 | 42, 39, 43, 84, 85 | syl22anc 1327 |
. . . 4
|
| 87 | volss 23301 |
. . . 4
| |
| 88 | 38, 41, 86, 87 | syl3anc 1326 |
. . 3
|
| 89 | 10, 14, 26, 35, 88 | lemul1ad 10963 |
. 2
|
| 90 | hsphoidmvle2.l |
. . . . 5
| |
| 91 | ne0i 3921 |
. . . . . 6
| |
| 92 | 3, 91 | syl 17 |
. . . . 5
|
| 93 | hsphoidmvle2.h |
. . . . . 6
| |
| 94 | 93, 7, 15, 5 | hsphoif 40790 |
. . . . 5
|
| 95 | 90, 15, 92, 1, 94 | hoidmvn0val 40798 |
. . . 4
|
| 96 | 94 | ffvelrnda 6359 |
. . . . . . 7
|
| 97 | volicore 40795 |
. . . . . . 7
| |
| 98 | 21, 96, 97 | syl2anc 693 |
. . . . . 6
|
| 99 | 98 | recnd 10068 |
. . . . 5
|
| 100 | fveq2 6191 |
. . . . . . . . 9
| |
| 101 | fveq2 6191 |
. . . . . . . . 9
| |
| 102 | 100, 101 | oveq12d 6668 |
. . . . . . . 8
|
| 103 | 102 | fveq2d 6195 |
. . . . . . 7
|
| 104 | 103 | adantl 482 |
. . . . . 6
|
| 105 | 93, 7, 15, 5, 3 | hsphoival 40793 |
. . . . . . . . . 10
|
| 106 | 2 | eldifbd 3587 |
. . . . . . . . . . 11
|
| 107 | 106 | iffalsed 4097 |
. . . . . . . . . 10
|
| 108 | 105, 107 | eqtrd 2656 |
. . . . . . . . 9
|
| 109 | 108 | oveq2d 6666 |
. . . . . . . 8
|
| 110 | 109 | fveq2d 6195 |
. . . . . . 7
|
| 111 | 110 | adantr 481 |
. . . . . 6
|
| 112 | 104, 111 | eqtrd 2656 |
. . . . 5
|
| 113 | 15, 99, 3, 112 | fprodsplit1 39825 |
. . . 4
|
| 114 | 7 | adantr 481 |
. . . . . . . . . 10
|
| 115 | 15 | adantr 481 |
. . . . . . . . . 10
|
| 116 | 5 | adantr 481 |
. . . . . . . . . 10
|
| 117 | 93, 114, 115, 116, 20 | hsphoival 40793 |
. . . . . . . . 9
|
| 118 | hsphoidmvle2.y |
. . . . . . . . . . . . 13
| |
| 119 | 19, 118 | syl6eleq 2711 |
. . . . . . . . . . . 12
|
| 120 | eldifn 3733 |
. . . . . . . . . . . 12
| |
| 121 | elunnel2 39198 |
. . . . . . . . . . . 12
| |
| 122 | 119, 120, 121 | syl2anc 693 |
. . . . . . . . . . 11
|
| 123 | 122 | adantl 482 |
. . . . . . . . . 10
|
| 124 | 123 | iftrued 4094 |
. . . . . . . . 9
|
| 125 | 117, 124 | eqtrd 2656 |
. . . . . . . 8
|
| 126 | 125 | oveq2d 6666 |
. . . . . . 7
|
| 127 | 126 | fveq2d 6195 |
. . . . . 6
|
| 128 | 127 | prodeq2dv 14653 |
. . . . 5
|
| 129 | 128 | oveq2d 6666 |
. . . 4
|
| 130 | 95, 113, 129 | 3eqtrd 2660 |
. . 3
|
| 131 | 93, 11, 15, 5 | hsphoif 40790 |
. . . . 5
|
| 132 | 90, 15, 92, 1, 131 | hoidmvn0val 40798 |
. . . 4
|
| 133 | 131 | ffvelrnda 6359 |
. . . . . . 7
|
| 134 | volicore 40795 |
. . . . . . 7
| |
| 135 | 21, 133, 134 | syl2anc 693 |
. . . . . 6
|
| 136 | 135 | recnd 10068 |
. . . . 5
|
| 137 | fveq2 6191 |
. . . . . . . 8
| |
| 138 | 100, 137 | oveq12d 6668 |
. . . . . . 7
|
| 139 | 138 | fveq2d 6195 |
. . . . . 6
|
| 140 | 139 | adantl 482 |
. . . . 5
|
| 141 | 15, 136, 3, 140 | fprodsplit1 39825 |
. . . 4
|
| 142 | 93, 11, 15, 5, 3 | hsphoival 40793 |
. . . . . . . 8
|
| 143 | 106 | iffalsed 4097 |
. . . . . . . 8
|
| 144 | 142, 143 | eqtrd 2656 |
. . . . . . 7
|
| 145 | 144 | oveq2d 6666 |
. . . . . 6
|
| 146 | 145 | fveq2d 6195 |
. . . . 5
|
| 147 | 11 | adantr 481 |
. . . . . . . . . 10
|
| 148 | 93, 147, 115, 116, 20 | hsphoival 40793 |
. . . . . . . . 9
|
| 149 | 123 | iftrued 4094 |
. . . . . . . . 9
|
| 150 | 148, 149 | eqtrd 2656 |
. . . . . . . 8
|
| 151 | 150 | oveq2d 6666 |
. . . . . . 7
|
| 152 | 151 | fveq2d 6195 |
. . . . . 6
|
| 153 | 152 | prodeq2dv 14653 |
. . . . 5
|
| 154 | 146, 153 | oveq12d 6668 |
. . . 4
|
| 155 | 132, 141, 154 | 3eqtrd 2660 |
. . 3
|
| 156 | 130, 155 | breq12d 4666 |
. 2
|
| 157 | 89, 156 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-prod 14636 df-rest 16083 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-cmp 21190 df-ovol 23233 df-vol 23234 |
| This theorem is referenced by: hoidmvlelem1 40809 hoidmvlelem2 40810 |
| Copyright terms: Public domain | W3C validator |