Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0hsphoire Structured version   Visualization version   Unicode version

Theorem sge0hsphoire 40803
Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0hsphoire.l  |-  L  =  ( x  e.  Fin  |->  ( a  e.  ( RR  ^m  x ) ,  b  e.  ( RR  ^m  x ) 
|->  if ( x  =  (/) ,  0 ,  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) ) ) )
sge0hsphoire.f  |-  ( ph  ->  Y  e.  Fin )
sge0hsphoire.z  |-  ( ph  ->  Z  e.  ( W 
\  Y ) )
sge0hsphoire.w  |-  W  =  ( Y  u.  { Z } )
sge0hsphoire.c  |-  ( ph  ->  C : NN --> ( RR 
^m  W ) )
sge0hsphoire.d  |-  ( ph  ->  D : NN --> ( RR 
^m  W ) )
sge0hsphoire.r  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( D `  j ) ) ) )  e.  RR )
sge0hsphoire.h  |-  H  =  ( x  e.  RR  |->  ( c  e.  ( RR  ^m  W ) 
|->  ( j  e.  W  |->  if ( j  e.  Y ,  ( c `
 j ) ,  if ( ( c `
 j )  <_  x ,  ( c `  j ) ,  x
) ) ) ) )
sge0hsphoire.s  |-  ( ph  ->  S  e.  RR )
Assertion
Ref Expression
sge0hsphoire  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  e.  RR )
Distinct variable groups:    x, k    C, a, b, k    D, a, b, k    D, c, k    H, a, b, k    S, a, b, k, x    S, c, x    W, a, b, j, k, x    W, c, j    Y, c, j, x    Z, c, k, x    ph, a,
b, j, k, x    ph, c
Allowed substitution hints:    C( x, j, c)    D( x, j)    S( j)    H( x, j, c)    L( x, j, k, a, b, c)    Y( k, a, b)    Z( j, a, b)

Proof of Theorem sge0hsphoire
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 nnex 11026 . . . 4  |-  NN  e.  _V
21a1i 11 . . 3  |-  ( ph  ->  NN  e.  _V )
3 sge0hsphoire.l . . . . . 6  |-  L  =  ( x  e.  Fin  |->  ( a  e.  ( RR  ^m  x ) ,  b  e.  ( RR  ^m  x ) 
|->  if ( x  =  (/) ,  0 ,  prod_ k  e.  x  ( vol `  ( ( a `  k ) [,) (
b `  k )
) ) ) ) )
4 sge0hsphoire.w . . . . . . . 8  |-  W  =  ( Y  u.  { Z } )
5 sge0hsphoire.f . . . . . . . . 9  |-  ( ph  ->  Y  e.  Fin )
6 snfi 8038 . . . . . . . . . 10  |-  { Z }  e.  Fin
76a1i 11 . . . . . . . . 9  |-  ( ph  ->  { Z }  e.  Fin )
8 unfi 8227 . . . . . . . . 9  |-  ( ( Y  e.  Fin  /\  { Z }  e.  Fin )  ->  ( Y  u.  { Z } )  e. 
Fin )
95, 7, 8syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( Y  u.  { Z } )  e.  Fin )
104, 9syl5eqel 2705 . . . . . . 7  |-  ( ph  ->  W  e.  Fin )
1110adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  W  e. 
Fin )
12 sge0hsphoire.c . . . . . . . 8  |-  ( ph  ->  C : NN --> ( RR 
^m  W ) )
1312ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  ( C `
 j )  e.  ( RR  ^m  W
) )
14 elmapi 7879 . . . . . . 7  |-  ( ( C `  j )  e.  ( RR  ^m  W )  ->  ( C `  j ) : W --> RR )
1513, 14syl 17 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  ( C `
 j ) : W --> RR )
16 sge0hsphoire.h . . . . . . . 8  |-  H  =  ( x  e.  RR  |->  ( c  e.  ( RR  ^m  W ) 
|->  ( j  e.  W  |->  if ( j  e.  Y ,  ( c `
 j ) ,  if ( ( c `
 j )  <_  x ,  ( c `  j ) ,  x
) ) ) ) )
17 eleq1 2689 . . . . . . . . . . . 12  |-  ( j  =  h  ->  (
j  e.  Y  <->  h  e.  Y ) )
18 fveq2 6191 . . . . . . . . . . . 12  |-  ( j  =  h  ->  (
c `  j )  =  ( c `  h ) )
1918breq1d 4663 . . . . . . . . . . . . 13  |-  ( j  =  h  ->  (
( c `  j
)  <_  x  <->  ( c `  h )  <_  x
) )
2019, 18ifbieq1d 4109 . . . . . . . . . . . 12  |-  ( j  =  h  ->  if ( ( c `  j )  <_  x ,  ( c `  j ) ,  x
)  =  if ( ( c `  h
)  <_  x , 
( c `  h
) ,  x ) )
2117, 18, 20ifbieq12d 4113 . . . . . . . . . . 11  |-  ( j  =  h  ->  if ( j  e.  Y ,  ( c `  j ) ,  if ( ( c `  j )  <_  x ,  ( c `  j ) ,  x
) )  =  if ( h  e.  Y ,  ( c `  h ) ,  if ( ( c `  h )  <_  x ,  ( c `  h ) ,  x
) ) )
2221cbvmptv 4750 . . . . . . . . . 10  |-  ( j  e.  W  |->  if ( j  e.  Y , 
( c `  j
) ,  if ( ( c `  j
)  <_  x , 
( c `  j
) ,  x ) ) )  =  ( h  e.  W  |->  if ( h  e.  Y ,  ( c `  h ) ,  if ( ( c `  h )  <_  x ,  ( c `  h ) ,  x
) ) )
2322mpteq2i 4741 . . . . . . . . 9  |-  ( c  e.  ( RR  ^m  W )  |->  ( j  e.  W  |->  if ( j  e.  Y , 
( c `  j
) ,  if ( ( c `  j
)  <_  x , 
( c `  j
) ,  x ) ) ) )  =  ( c  e.  ( RR  ^m  W ) 
|->  ( h  e.  W  |->  if ( h  e.  Y ,  ( c `
 h ) ,  if ( ( c `
 h )  <_  x ,  ( c `  h ) ,  x
) ) ) )
2423mpteq2i 4741 . . . . . . . 8  |-  ( x  e.  RR  |->  ( c  e.  ( RR  ^m  W )  |->  ( j  e.  W  |->  if ( j  e.  Y , 
( c `  j
) ,  if ( ( c `  j
)  <_  x , 
( c `  j
) ,  x ) ) ) ) )  =  ( x  e.  RR  |->  ( c  e.  ( RR  ^m  W
)  |->  ( h  e.  W  |->  if ( h  e.  Y ,  ( c `  h ) ,  if ( ( c `  h )  <_  x ,  ( c `  h ) ,  x ) ) ) ) )
2516, 24eqtri 2644 . . . . . . 7  |-  H  =  ( x  e.  RR  |->  ( c  e.  ( RR  ^m  W ) 
|->  ( h  e.  W  |->  if ( h  e.  Y ,  ( c `
 h ) ,  if ( ( c `
 h )  <_  x ,  ( c `  h ) ,  x
) ) ) ) )
26 sge0hsphoire.s . . . . . . . 8  |-  ( ph  ->  S  e.  RR )
2726adantr 481 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  S  e.  RR )
28 sge0hsphoire.d . . . . . . . . 9  |-  ( ph  ->  D : NN --> ( RR 
^m  W ) )
2928ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN )  ->  ( D `
 j )  e.  ( RR  ^m  W
) )
30 elmapi 7879 . . . . . . . 8  |-  ( ( D `  j )  e.  ( RR  ^m  W )  ->  ( D `  j ) : W --> RR )
3129, 30syl 17 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  ( D `
 j ) : W --> RR )
3225, 27, 11, 31hsphoif 40790 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( H `  S ) `
 ( D `  j ) ) : W --> RR )
333, 11, 15, 32hoidmvcl 40796 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( C `  j ) ( L `  W
) ( ( H `
 S ) `  ( D `  j ) ) )  e.  ( 0 [,) +oo )
)
34 eqid 2622 . . . . 5  |-  ( j  e.  NN  |->  ( ( C `  j ) ( L `  W
) ( ( H `
 S ) `  ( D `  j ) ) ) )  =  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) )
3533, 34fmptd 6385 . . . 4  |-  ( ph  ->  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) : NN --> ( 0 [,) +oo ) )
36 icossicc 12260 . . . . 5  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
3736a1i 11 . . . 4  |-  ( ph  ->  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )
3835, 37fssd 6057 . . 3  |-  ( ph  ->  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) : NN --> ( 0 [,] +oo ) )
392, 38sge0cl 40598 . 2  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  e.  ( 0 [,] +oo )
)
402, 38sge0xrcl 40602 . . 3  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  e.  RR* )
41 pnfxr 10092 . . . 4  |- +oo  e.  RR*
4241a1i 11 . . 3  |-  ( ph  -> +oo  e.  RR* )
43 sge0hsphoire.r . . . . 5  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( D `  j ) ) ) )  e.  RR )
4443rexrd 10089 . . . 4  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( D `  j ) ) ) )  e. 
RR* )
45 nfv 1843 . . . . 5  |-  F/ j
ph
4636, 33sseldi 3601 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( C `  j ) ( L `  W
) ( ( H `
 S ) `  ( D `  j ) ) )  e.  ( 0 [,] +oo )
)
473, 11, 15, 31hoidmvcl 40796 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( C `  j ) ( L `  W
) ( D `  j ) )  e.  ( 0 [,) +oo ) )
4836, 47sseldi 3601 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( C `  j ) ( L `  W
) ( D `  j ) )  e.  ( 0 [,] +oo ) )
49 sge0hsphoire.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( W 
\  Y ) )
5049adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  Z  e.  ( W  \  Y
) )
513, 11, 50, 4, 27, 25, 15, 31hsphoidmvle 40800 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( C `  j ) ( L `  W
) ( ( H `
 S ) `  ( D `  j ) ) )  <_  (
( C `  j
) ( L `  W ) ( D `
 j ) ) )
5245, 2, 46, 48, 51sge0lempt 40627 . . . 4  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  <_  (Σ^ `  (
j  e.  NN  |->  ( ( C `  j
) ( L `  W ) ( D `
 j ) ) ) ) )
5343ltpnfd 11955 . . . 4  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( D `  j ) ) ) )  < +oo )
5440, 44, 42, 52, 53xrlelttrd 11991 . . 3  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  < +oo )
5540, 42, 54xrltned 39573 . 2  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  =/= +oo )
56 ge0xrre 39758 . 2  |-  ( ( (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  e.  ( 0 [,] +oo )  /\  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  =/= +oo )  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  e.  RR )
5739, 55, 56syl2anc 693 1  |-  ( ph  ->  (Σ^ `  ( j  e.  NN  |->  ( ( C `  j ) ( L `
 W ) ( ( H `  S
) `  ( D `  j ) ) ) ) )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Fincfn 7955   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   NNcn 11020   [,)cico 12177   [,]cicc 12178   prod_cprod 14635   volcvol 23232  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-sumge0 40580
This theorem is referenced by:  hoidmvlelem1  40809  hoidmvlelem2  40810
  Copyright terms: Public domain W3C validator