MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcllem Structured version   Visualization version   Unicode version

Theorem expcllem 12871
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1  |-  F  C_  CC
expcllem.2  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
expcllem.3  |-  1  e.  F
Assertion
Ref Expression
expcllem  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
Distinct variable groups:    x, y, A    x, B    x, F, y
Allowed substitution hint:    B( y)

Proof of Theorem expcllem
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11294 . 2  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
2 oveq2 6658 . . . . . . 7  |-  ( z  =  1  ->  ( A ^ z )  =  ( A ^ 1 ) )
32eleq1d 2686 . . . . . 6  |-  ( z  =  1  ->  (
( A ^ z
)  e.  F  <->  ( A ^ 1 )  e.  F ) )
43imbi2d 330 . . . . 5  |-  ( z  =  1  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ 1 )  e.  F ) ) )
5 oveq2 6658 . . . . . . 7  |-  ( z  =  w  ->  ( A ^ z )  =  ( A ^ w
) )
65eleq1d 2686 . . . . . 6  |-  ( z  =  w  ->  (
( A ^ z
)  e.  F  <->  ( A ^ w )  e.  F ) )
76imbi2d 330 . . . . 5  |-  ( z  =  w  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ w
)  e.  F ) ) )
8 oveq2 6658 . . . . . . 7  |-  ( z  =  ( w  + 
1 )  ->  ( A ^ z )  =  ( A ^ (
w  +  1 ) ) )
98eleq1d 2686 . . . . . 6  |-  ( z  =  ( w  + 
1 )  ->  (
( A ^ z
)  e.  F  <->  ( A ^ ( w  + 
1 ) )  e.  F ) )
109imbi2d 330 . . . . 5  |-  ( z  =  ( w  + 
1 )  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ (
w  +  1 ) )  e.  F ) ) )
11 oveq2 6658 . . . . . . 7  |-  ( z  =  B  ->  ( A ^ z )  =  ( A ^ B
) )
1211eleq1d 2686 . . . . . 6  |-  ( z  =  B  ->  (
( A ^ z
)  e.  F  <->  ( A ^ B )  e.  F
) )
1312imbi2d 330 . . . . 5  |-  ( z  =  B  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ B
)  e.  F ) ) )
14 expcllem.1 . . . . . . . . 9  |-  F  C_  CC
1514sseli 3599 . . . . . . . 8  |-  ( A  e.  F  ->  A  e.  CC )
16 exp1 12866 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
1715, 16syl 17 . . . . . . 7  |-  ( A  e.  F  ->  ( A ^ 1 )  =  A )
1817eleq1d 2686 . . . . . 6  |-  ( A  e.  F  ->  (
( A ^ 1 )  e.  F  <->  A  e.  F ) )
1918ibir 257 . . . . 5  |-  ( A  e.  F  ->  ( A ^ 1 )  e.  F )
20 expcllem.2 . . . . . . . . . . . 12  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
2120caovcl 6828 . . . . . . . . . . 11  |-  ( ( ( A ^ w
)  e.  F  /\  A  e.  F )  ->  ( ( A ^
w )  x.  A
)  e.  F )
2221ancoms 469 . . . . . . . . . 10  |-  ( ( A  e.  F  /\  ( A ^ w )  e.  F )  -> 
( ( A ^
w )  x.  A
)  e.  F )
2322adantlr 751 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( ( A ^ w )  x.  A )  e.  F
)
24 nnnn0 11299 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  w  e.  NN0 )
25 expp1 12867 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  w  e.  NN0 )  -> 
( A ^ (
w  +  1 ) )  =  ( ( A ^ w )  x.  A ) )
2615, 24, 25syl2an 494 . . . . . . . . . . 11  |-  ( ( A  e.  F  /\  w  e.  NN )  ->  ( A ^ (
w  +  1 ) )  =  ( ( A ^ w )  x.  A ) )
2726eleq1d 2686 . . . . . . . . . 10  |-  ( ( A  e.  F  /\  w  e.  NN )  ->  ( ( A ^
( w  +  1 ) )  e.  F  <->  ( ( A ^ w
)  x.  A )  e.  F ) )
2827adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( ( A ^ ( w  + 
1 ) )  e.  F  <->  ( ( A ^ w )  x.  A )  e.  F
) )
2923, 28mpbird 247 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( A ^ ( w  + 
1 ) )  e.  F )
3029exp31 630 . . . . . . 7  |-  ( A  e.  F  ->  (
w  e.  NN  ->  ( ( A ^ w
)  e.  F  -> 
( A ^ (
w  +  1 ) )  e.  F ) ) )
3130com12 32 . . . . . 6  |-  ( w  e.  NN  ->  ( A  e.  F  ->  ( ( A ^ w
)  e.  F  -> 
( A ^ (
w  +  1 ) )  e.  F ) ) )
3231a2d 29 . . . . 5  |-  ( w  e.  NN  ->  (
( A  e.  F  ->  ( A ^ w
)  e.  F )  ->  ( A  e.  F  ->  ( A ^ ( w  + 
1 ) )  e.  F ) ) )
334, 7, 10, 13, 19, 32nnind 11038 . . . 4  |-  ( B  e.  NN  ->  ( A  e.  F  ->  ( A ^ B )  e.  F ) )
3433impcom 446 . . 3  |-  ( ( A  e.  F  /\  B  e.  NN )  ->  ( A ^ B
)  e.  F )
35 oveq2 6658 . . . . 5  |-  ( B  =  0  ->  ( A ^ B )  =  ( A ^ 0 ) )
36 exp0 12864 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3715, 36syl 17 . . . . 5  |-  ( A  e.  F  ->  ( A ^ 0 )  =  1 )
3835, 37sylan9eqr 2678 . . . 4  |-  ( ( A  e.  F  /\  B  =  0 )  ->  ( A ^ B )  =  1 )
39 expcllem.3 . . . 4  |-  1  e.  F
4038, 39syl6eqel 2709 . . 3  |-  ( ( A  e.  F  /\  B  =  0 )  ->  ( A ^ B )  e.  F
)
4134, 40jaodan 826 . 2  |-  ( ( A  e.  F  /\  ( B  e.  NN  \/  B  =  0
) )  ->  ( A ^ B )  e.  F )
421, 41sylan2b 492 1  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   NN0cn0 11292   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  expcl2lem  12872  nnexpcl  12873  nn0expcl  12874  zexpcl  12875  qexpcl  12876  reexpcl  12877  expcl  12878  expge0  12896  expge1  12897  lgsfcl2  25028
  Copyright terms: Public domain W3C validator