MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaxpdom Structured version   Visualization version   Unicode version

Theorem cdaxpdom 9011
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
cdaxpdom  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )

Proof of Theorem cdaxpdom
StepHypRef Expression
1 relsdom 7962 . . . . 5  |-  Rel  ~<
21brrelex2i 5159 . . . 4  |-  ( 1o 
~<  A  ->  A  e. 
_V )
31brrelex2i 5159 . . . 4  |-  ( 1o 
~<  B  ->  B  e. 
_V )
4 cdaval 8992 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
52, 3, 4syl2an 494 . . 3  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
6 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
7 xpsneng 8045 . . . . . . 7  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
82, 6, 7sylancl 694 . . . . . 6  |-  ( 1o 
~<  A  ->  ( A  X.  { (/) } ) 
~~  A )
9 sdomen2 8105 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~~  A  -> 
( 1o  ~<  ( A  X.  { (/) } )  <-> 
1o  ~<  A ) )
108, 9syl 17 . . . . 5  |-  ( 1o 
~<  A  ->  ( 1o 
~<  ( A  X.  { (/)
} )  <->  1o  ~<  A ) )
1110ibir 257 . . . 4  |-  ( 1o 
~<  A  ->  1o  ~<  ( A  X.  { (/) } ) )
12 1on 7567 . . . . . . 7  |-  1o  e.  On
13 xpsneng 8045 . . . . . . 7  |-  ( ( B  e.  _V  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
143, 12, 13sylancl 694 . . . . . 6  |-  ( 1o 
~<  B  ->  ( B  X.  { 1o }
)  ~~  B )
15 sdomen2 8105 . . . . . 6  |-  ( ( B  X.  { 1o } )  ~~  B  ->  ( 1o  ~<  ( B  X.  { 1o }
)  <->  1o  ~<  B ) )
1614, 15syl 17 . . . . 5  |-  ( 1o 
~<  B  ->  ( 1o 
~<  ( B  X.  { 1o } )  <->  1o  ~<  B ) )
1716ibir 257 . . . 4  |-  ( 1o 
~<  B  ->  1o  ~<  ( B  X.  { 1o } ) )
18 unxpdom 8167 . . . 4  |-  ( ( 1o  ~<  ( A  X.  { (/) } )  /\  1o  ~<  ( B  X.  { 1o } ) )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) )
1911, 17, 18syl2an 494 . . 3  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  ~<_  ( ( A  X.  { (/)
} )  X.  ( B  X.  { 1o }
) ) )
205, 19eqbrtrd 4675 . 2  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) )
21 xpen 8123 . . 3  |-  ( ( ( A  X.  { (/)
} )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)  ->  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) 
~~  ( A  X.  B ) )
228, 14, 21syl2an 494 . 2  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) )  ~~  ( A  X.  B
) )
23 domentr 8015 . 2  |-  ( ( ( A  +c  B
)  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) )  /\  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) 
~~  ( A  X.  B ) )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )
2420, 22, 23syl2anc 693 1  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   Oncon0 5723  (class class class)co 6650   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-cda 8990
This theorem is referenced by:  canthp1lem1  9474
  Copyright terms: Public domain W3C validator