Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem16 Structured version   Visualization version   Unicode version

Theorem poimirlem16 33425
Description: Lemma for poimir 33442 establishing the vertices of the simplex of poimirlem17 33426. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem22.2  |-  ( ph  ->  T  e.  S )
poimirlem18.3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )
poimirlem18.4  |-  ( ph  ->  ( 2nd `  T
)  =  0 )
Assertion
Ref Expression
poimirlem16  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
Distinct variable groups:    f, j, n, p, t, y    ph, j, n, y    j, F, n, y    j, N, n, y    T, j, n, y    ph, p, t    f, K, j, n, p, t   
f, N, p, t    T, f, p    f, F, p, t    t, T    S, j, n, p, t, y
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem16
StepHypRef Expression
1 poimirlem22.2 . . 3  |-  ( ph  ->  T  e.  S )
2 fveq2 6191 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
32breq2d 4665 . . . . . . . . . 10  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
43ifbid 4108 . . . . . . . . 9  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
54csbeq1d 3540 . . . . . . . 8  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
6 fveq2 6191 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
76fveq2d 6195 . . . . . . . . . 10  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
86fveq2d 6195 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
98imaeq1d 5465 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
109xpeq1d 5138 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
118imaeq1d 5465 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
1211xpeq1d 5138 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
1310, 12uneq12d 3768 . . . . . . . . . 10  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
147, 13oveq12d 6668 . . . . . . . . 9  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
1514csbeq2dv 3992 . . . . . . . 8  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
165, 15eqtrd 2656 . . . . . . 7  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
1716mpteq2dv 4745 . . . . . 6  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
1817eqeq2d 2632 . . . . 5  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
19 poimirlem22.s . . . . 5  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
2018, 19elrab2 3366 . . . 4  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
2120simprbi 480 . . 3  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
221, 21syl 17 . 2  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
23 elrabi 3359 . . . . . . . . . . . 12  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
2423, 19eleq2s 2719 . . . . . . . . . . 11  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
251, 24syl 17 . . . . . . . . . 10  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
26 xp1st 7198 . . . . . . . . . 10  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
2725, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
28 xp1st 7198 . . . . . . . . 9  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
2927, 28syl 17 . . . . . . . 8  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
30 elmapfn 7880 . . . . . . . 8  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
3129, 30syl 17 . . . . . . 7  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
3231adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 1st `  ( 1st `  T
) )  Fn  (
1 ... N ) )
33 1ex 10035 . . . . . . . . . 10  |-  1  e.  _V
34 fnconstg 6093 . . . . . . . . . 10  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) ) )
3533, 34ax-mp 5 . . . . . . . . 9  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )
36 c0ex 10034 . . . . . . . . . 10  |-  0  e.  _V
37 fnconstg 6093 . . . . . . . . . 10  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )
3836, 37ax-mp 5 . . . . . . . . 9  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )
3935, 38pm3.2i 471 . . . . . . . 8  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
40 xp2nd 7199 . . . . . . . . . . . . 13  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
4127, 40syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
42 fvex 6201 . . . . . . . . . . . . 13  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
43 f1oeq1 6127 . . . . . . . . . . . . 13  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
4442, 43elab 3350 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
4541, 44sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
46 dff1o3 6143 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  T ) ) ) )
4746simprbi 480 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  T ) ) )
4845, 47syl 17 . . . . . . . . . 10  |-  ( ph  ->  Fun  `' ( 2nd `  ( 1st `  T
) ) )
49 imain 5974 . . . . . . . . . 10  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
5048, 49syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) ) )
51 elfznn0 12433 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  NN0 )
52 nn0p1nn 11332 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN0  ->  ( y  +  1 )  e.  NN )
5351, 52syl 17 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  NN )
5453nnred 11035 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  RR )
5554ltp1d 10954 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  <  ( ( y  +  1 )  +  1 ) )
56 fzdisj 12368 . . . . . . . . . . . 12  |-  ( ( y  +  1 )  <  ( ( y  +  1 )  +  1 )  ->  (
( 1 ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
5755, 56syl 17 . . . . . . . . . . 11  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 1 ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
5857imaeq2d 5466 . . . . . . . . . 10  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
59 ima0 5481 . . . . . . . . . 10  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
6058, 59syl6eq 2672 . . . . . . . . 9  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  (/) )
6150, 60sylan9req 2677 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/) )
62 fnun 5997 . . . . . . . 8  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
6339, 61, 62sylancr 695 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
64 imaundi 5545 . . . . . . . . 9  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
65 nnuz 11723 . . . . . . . . . . . . . . 15  |-  NN  =  ( ZZ>= `  1 )
6653, 65syl6eleq 2711 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  ( ZZ>= `  1
) )
67 peano2uz 11741 . . . . . . . . . . . . . 14  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
y  +  1 )  +  1 )  e.  ( ZZ>= `  1 )
)
6866, 67syl 17 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
) )
6968adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
) )
70 poimir.0 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN )
7170nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  CC )
72 npcan1 10455 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
7371, 72syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
7473adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  =  N )
75 elfzuz3 12339 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  y
) )
76 eluzp1p1 11713 . . . . . . . . . . . . . . 15  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( y  +  1 ) ) )
7775, 76syl 17 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) ) )
7877adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) ) )
7974, 78eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  ( y  +  1 ) ) )
80 fzsplit2 12366 . . . . . . . . . . . 12  |-  ( ( ( ( y  +  1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( y  +  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
8169, 79, 80syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  =  ( ( 1 ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
8281imaeq2d 5466 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N
) ) ) )
83 f1ofo 6144 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
84 foima 6120 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
8545, 83, 843syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
8685adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
8782, 86eqtr3d 2658 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( 1 ... N
) )
8864, 87syl5eqr 2670 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
8988fneq2d 5982 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )  <->  ( (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) ) )
9063, 89mpbid 222 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( 1 ... N ) )
91 ovexd 6680 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  e. 
_V )
92 inidm 3822 . . . . . 6  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
93 eqidd 2623 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  =  ( ( 1st `  ( 1st `  T ) ) `
 n ) )
94 eqidd 2623 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n ) )
9532, 90, 91, 91, 92, 93, 94offval 6904 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) ) )
96 oveq1 6657 . . . . . . . . . 10  |-  ( 1  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  ->  (
1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )  =  ( if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) ) )
9796eqeq2d 2632 . . . . . . . . 9  |-  ( 1  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n )  =  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )  <->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) ) )
98 oveq1 6657 . . . . . . . . . 10  |-  ( 0  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  ->  (
0  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )  =  ( if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) ) )
9998eqeq2d 2632 . . . . . . . . 9  |-  ( 0  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n )  =  ( 0  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )  <->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) ) )
100 1p0e1 11133 . . . . . . . . . . . . . 14  |-  ( 1  +  0 )  =  1
101100eqcomi 2631 . . . . . . . . . . . . 13  |-  1  =  ( 1  +  0 )
102 f1ofn 6138 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
10345, 102syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
104103adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
105 fzss2 12381 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  (
y  +  1 ) )  ->  ( 1 ... ( y  +  1 ) )  C_  ( 1 ... N
) )
10679, 105syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... ( y  +  1 ) )  C_  ( 1 ... N
) )
107 eluzfz1 12348 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
10866, 107syl 17 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
109108adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
110 fnfvima 6496 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  (
1 ... ( y  +  1 ) )  C_  ( 1 ... N
)  /\  1  e.  ( 1 ... (
y  +  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )
111104, 106, 109, 110syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )
112 fvun1 6269 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ) )
11335, 38, 112mp3an12 1414 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/)  /\  ( ( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ) )
11461, 111, 113syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) ) )
11533fvconst2 6469 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  1 )
116111, 115syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) )  =  1 )
117114, 116eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  1 )
118 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  n  e.  ( 1 ... ( N  -  1 ) ) )
11970nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  N  e.  ZZ )
120 peano2zm 11420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
121119, 120syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
122 1z 11407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  ZZ
123121, 122jctil 560 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( 1  e.  ZZ  /\  ( N  -  1 )  e.  ZZ ) )
124 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  n  e.  ZZ )
125124, 122jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  (
n  e.  ZZ  /\  1  e.  ZZ )
)
126 fzaddel 12375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 1  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( 1 ... ( N  -  1 ) )  <-> 
( n  +  1 )  e.  ( ( 1  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
127123, 125, 126syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... ( N  - 
1 ) )  <->  ( n  +  1 )  e.  ( ( 1  +  1 ) ... (
( N  -  1 )  +  1 ) ) ) )
128118, 127mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
n  +  1 )  e.  ( ( 1  +  1 ) ... ( ( N  - 
1 )  +  1 ) ) )
12973oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( 1  +  1 ) ... (
( N  -  1 )  +  1 ) )  =  ( ( 1  +  1 ) ... N ) )
130129adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( 1  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( 1  +  1 ) ... N ) )
131128, 130eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
n  +  1 )  e.  ( ( 1  +  1 ) ... N ) )
132131ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  A. n  e.  ( 1 ... ( N  -  1 ) ) ( n  +  1 )  e.  ( ( 1  +  1 ) ... N ) )
133 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  y  e.  ( ( 1  +  1 ) ... N
) )
134 peano2z 11418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( 1  e.  ZZ  ->  (
1  +  1 )  e.  ZZ )
135122, 134ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( 1  +  1 )  e.  ZZ
136119, 135jctil 560 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( ( 1  +  1 )  e.  ZZ  /\  N  e.  ZZ ) )
137 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( ( 1  +  1 ) ... N )  ->  y  e.  ZZ )
138137, 122jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ( ( 1  +  1 ) ... N )  ->  (
y  e.  ZZ  /\  1  e.  ZZ )
)
139 fzsubel 12377 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( 1  +  1 )  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( y  e.  ( ( 1  +  1 ) ... N )  <-> 
( y  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( N  - 
1 ) ) ) )
140136, 138, 139syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  (
y  e.  ( ( 1  +  1 ) ... N )  <->  ( y  -  1 )  e.  ( ( ( 1  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
141133, 140mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  (
y  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( N  -  1 ) ) )
142 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  CC
143142, 142pncan3oi 10297 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 1  +  1 )  -  1 )  =  1
144143oveq1i 6660 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( 1  +  1 )  -  1 ) ... ( N  - 
1 ) )  =  ( 1 ... ( N  -  1 ) )
145141, 144syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  (
y  -  1 )  e.  ( 1 ... ( N  -  1 ) ) )
146137zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ( ( 1  +  1 ) ... N )  ->  y  e.  CC )
147 elfznn 12370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  n  e.  NN )
148147nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  n  e.  CC )
149 subadd2 10285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( y  e.  CC  /\  1  e.  CC  /\  n  e.  CC )  ->  (
( y  -  1 )  =  n  <->  ( n  +  1 )  =  y ) )
150142, 149mp3an2 1412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  e.  CC  /\  n  e.  CC )  ->  ( ( y  - 
1 )  =  n  <-> 
( n  +  1 )  =  y ) )
151150bicomd 213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  e.  CC  /\  n  e.  CC )  ->  ( ( n  + 
1 )  =  y  <-> 
( y  -  1 )  =  n ) )
152 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( n  +  1 )  =  y  <->  y  =  ( n  +  1
) )
153 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  -  1 )  =  n  <->  n  =  ( y  -  1 ) )
154151, 152, 1533bitr3g 302 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  e.  CC  /\  n  e.  CC )  ->  ( y  =  ( n  +  1 )  <-> 
n  =  ( y  -  1 ) ) )
155146, 148, 154syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  e.  ( ( 1  +  1 ) ... N )  /\  n  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( y  =  ( n  +  1 )  <->  n  =  (
y  -  1 ) ) )
156155ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( ( 1  +  1 ) ... N )  ->  A. n  e.  ( 1 ... ( N  -  1 ) ) ( y  =  ( n  +  1 )  <->  n  =  (
y  -  1 ) ) )
157156adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  A. n  e.  ( 1 ... ( N  -  1 ) ) ( y  =  ( n  +  1 )  <->  n  =  (
y  -  1 ) ) )
158 reu6i 3397 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  -  1 )  e.  ( 1 ... ( N  - 
1 ) )  /\  A. n  e.  ( 1 ... ( N  - 
1 ) ) ( y  =  ( n  +  1 )  <->  n  =  ( y  -  1 ) ) )  ->  E! n  e.  (
1 ... ( N  - 
1 ) ) y  =  ( n  + 
1 ) )
159145, 157, 158syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  E! n  e.  ( 1 ... ( N  - 
1 ) ) y  =  ( n  + 
1 ) )
160159ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  A. y  e.  ( ( 1  +  1 ) ... N ) E! n  e.  ( 1 ... ( N  -  1 ) ) y  =  ( n  +  1 ) )
161 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  +  1 ) )  =  ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) )
162161f1ompt 6382 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  e.  ( 1 ... ( N  - 
1 ) )  |->  ( n  +  1 ) ) : ( 1 ... ( N  - 
1 ) ) -1-1-onto-> ( ( 1  +  1 ) ... N )  <->  ( A. n  e.  ( 1 ... ( N  - 
1 ) ) ( n  +  1 )  e.  ( ( 1  +  1 ) ... N )  /\  A. y  e.  ( (
1  +  1 ) ... N ) E! n  e.  ( 1 ... ( N  - 
1 ) ) y  =  ( n  + 
1 ) ) )
163132, 160, 162sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  ( n  +  1 ) ) : ( 1 ... ( N  -  1 ) ) -1-1-onto-> ( ( 1  +  1 ) ... N ) )
164 f1osng 6177 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  1  e.  _V )  ->  { <. N ,  1
>. } : { N }
-1-1-onto-> { 1 } )
16570, 33, 164sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  { <. N ,  1
>. } : { N }
-1-1-onto-> { 1 } )
16670nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  N  e.  RR )
167166ltm1d 10956 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( N  -  1 )  <  N )
168121zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( N  -  1 )  e.  RR )
169168, 166ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( N  - 
1 )  <  N  <->  -.  N  <_  ( N  -  1 ) ) )
170167, 169mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  -.  N  <_  ( N  -  1 ) )
171 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  N  <_  ( N  -  1 ) )
172170, 171nsyl 135 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  -.  N  e.  ( 1 ... ( N  -  1 ) ) )
173 disjsn 4246 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( 1 ... ( N  - 
1 ) ) )
174172, 173sylibr 224 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/) )
175 1re 10039 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  1  e.  RR
176175ltp1i 10927 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  1  <  ( 1  +  1 )
177175, 175readdcli 10053 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 1  +  1 )  e.  RR
178175, 177ltnlei 10158 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1  <  ( 1  +  1 )  <->  -.  (
1  +  1 )  <_  1 )
179176, 178mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  -.  (
1  +  1 )  <_  1
180 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1  e.  ( ( 1  +  1 ) ... N )  ->  (
1  +  1 )  <_  1 )
181179, 180mto 188 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  -.  1  e.  ( ( 1  +  1 ) ... N
)
182 disjsn 4246 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 1  +  1 ) ... N
)  i^i  { 1 } )  =  (/)  <->  -.  1  e.  ( (
1  +  1 ) ... N ) )
183181, 182mpbir 221 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1  +  1 ) ... N )  i^i  { 1 } )  =  (/)
184 f1oun 6156 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) ) : ( 1 ... ( N  -  1 ) ) -1-1-onto-> ( ( 1  +  1 ) ... N
)  /\  { <. N , 
1 >. } : { N } -1-1-onto-> { 1 } )  /\  ( ( ( 1 ... ( N  -  1 ) )  i^i  { N }
)  =  (/)  /\  (
( ( 1  +  1 ) ... N
)  i^i  { 1 } )  =  (/) ) )  ->  (
( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  ( n  +  1 ) )  u.  { <. N ,  1 >. } ) : ( ( 1 ... ( N  -  1 ) )  u.  { N } ) -1-1-onto-> ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) )
185183, 184mpanr2 720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) ) : ( 1 ... ( N  -  1 ) ) -1-1-onto-> ( ( 1  +  1 ) ... N
)  /\  { <. N , 
1 >. } : { N } -1-1-onto-> { 1 } )  /\  ( ( 1 ... ( N  - 
1 ) )  i^i 
{ N } )  =  (/) )  ->  (
( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  ( n  +  1 ) )  u.  { <. N ,  1 >. } ) : ( ( 1 ... ( N  -  1 ) )  u.  { N } ) -1-1-onto-> ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) )
186163, 165, 174, 185syl21anc 1325 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) )  u. 
{ <. N ,  1
>. } ) : ( ( 1 ... ( N  -  1 ) )  u.  { N } ) -1-1-onto-> ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) )
187 ssv 3625 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  NN  C_  _V
188187, 70sseldi 3601 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  N  e.  _V )
18933a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  1  e.  _V )
19070, 65syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
19173, 190eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
192 uzid 11702 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
193 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
194121, 192, 1933syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
19573, 194eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
196 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
197191, 195, 196syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) ) )
19873oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  ( N ... N ) )
199 fzsn 12383 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
200119, 199syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( N ... N
)  =  { N } )
201198, 200eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  { N } )
202201uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
203197, 202eqtr2d 2657 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  { N } )  =  ( 1 ... N ) )
204 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  N  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  1 )
205204adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  n  =  N )  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  1 )
206188, 189, 203, 205fmptapd 6437 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )  u.  { <. N , 
1 >. } )  =  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
207 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  N  ->  (
n  e.  ( 1 ... ( N  - 
1 ) )  <->  N  e.  ( 1 ... ( N  -  1 ) ) ) )
208207notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  N  ->  ( -.  n  e.  (
1 ... ( N  - 
1 ) )  <->  -.  N  e.  ( 1 ... ( N  -  1 ) ) ) )
209172, 208syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( n  =  N  ->  -.  n  e.  ( 1 ... ( N  -  1 ) ) ) )
210209necon2ad 2809 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  n  =/=  N
) )
211210imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  n  =/=  N )
212 ifnefalse 4098 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =/=  N  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  ( n  +  1 ) )
213211, 212syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  ( n  +  1 ) )
214213mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  =  ( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  ( n  +  1 ) ) )
215214uneq1d 3766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )  u.  { <. N , 
1 >. } )  =  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) )  u. 
{ <. N ,  1
>. } ) )
216206, 215eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  =  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) )  u. 
{ <. N ,  1
>. } ) )
217197, 202eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
218 uzid 11702 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1  e.  ZZ  ->  1  e.  ( ZZ>= `  1 )
)
219 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1  e.  ( ZZ>= `  1
)  ->  ( 1  +  1 )  e.  ( ZZ>= `  1 )
)
220122, 218, 219mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1  +  1 )  e.  ( ZZ>= `  1 )
221 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 1  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  1 )
)  ->  ( 1 ... N )  =  ( ( 1 ... 1 )  u.  (
( 1  +  1 ) ... N ) ) )
222220, 190, 221sylancr 695 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... 1 )  u.  ( ( 1  +  1 ) ... N ) ) )
223 fzsn 12383 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
224122, 223ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1 ... 1 )  =  { 1 }
225224uneq1i 3763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1 ... 1 )  u.  ( ( 1  +  1 ) ... N ) )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... N ) )
226225equncomi 3759 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1 ... 1 )  u.  ( ( 1  +  1 ) ... N ) )  =  ( ( ( 1  +  1 ) ... N )  u.  {
1 } )
227222, 226syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( 1 ... N
)  =  ( ( ( 1  +  1 ) ... N )  u.  { 1 } ) )
228216, 217, 227f1oeq123d 6133 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  <->  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  +  1 ) )  u.  { <. N , 
1 >. } ) : ( ( 1 ... ( N  -  1 ) )  u.  { N } ) -1-1-onto-> ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) ) )
229186, 228mpbird 247 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) )
230 f1oco 6159 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  /\  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
23145, 229, 230syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
232 dff1o3 6143 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  <->  ( (
( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N )  /\  Fun  `' ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) ) )
233232simprbi 480 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  ->  Fun  `' ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) )
234231, 233syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Fun  `' ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) )
235 imain 5974 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  `' ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )  -> 
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( 1 ... y )  i^i  (
( y  +  1 ) ... N ) ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  i^i  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) ) )
236234, 235syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( 1 ... y )  i^i  (
( y  +  1 ) ... N ) ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  i^i  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) ) )
23751nn0red 11352 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  RR )
238237ltp1d 10954 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  <  ( y  +  1 ) )
239 fzdisj 12368 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  <  ( y  +  1 )  ->  (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... N ) )  =  (/) )
240238, 239syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... N ) )  =  (/) )
241240imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" (/) ) )
242 ima0 5481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " (/) )  =  (/)
243241, 242syl6eq 2672 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... N ) ) )  =  (/) )
244236, 243sylan9req 2677 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  i^i  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) )  =  (/) )
245 imassrn 5477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) " (
( y  +  1 ) ... N ) )  C_  ran  ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) )
246 f1of 6137 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  ->  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) )
247 frn 6053 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) : ( 1 ... N ) --> ( 1 ... N
)  ->  ran  ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) )  C_  ( 1 ... N ) )
248229, 246, 2473syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ran  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) 
C_  ( 1 ... N ) )
249245, 248syl5ss 3614 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )
" ( ( y  +  1 ) ... N ) )  C_  ( 1 ... N
) )
250249adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( ( y  +  1 ) ... N
) )  C_  (
1 ... N ) )
251 elfz1end 12371 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  <->  N  e.  ( 1 ... N
) )
25270, 251sylib 208 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  ( 1 ... N ) )
253 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) )  =  ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) )
254204, 253, 33fvmpt 6282 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( 1 ... N )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) `  N )  =  1 )
255252, 254syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) `
 N )  =  1 )
256255adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) `  N )  =  1 )
257 f1ofn 6138 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  ->  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )  Fn  ( 1 ... N ) )
258229, 257syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  Fn  ( 1 ... N
) )
259258adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  Fn  (
1 ... N ) )
260 fzss1 12380 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
y  +  1 ) ... N )  C_  ( 1 ... N
) )
26166, 260syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N ) )
262261adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N ) )
263 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( ZZ>= `  (
y  +  1 ) )  ->  N  e.  ( ( y  +  1 ) ... N
) )
26479, 263syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ( y  +  1 ) ... N
) )
265 fnfvima 6496 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  Fn  ( 1 ... N
)  /\  ( (
y  +  1 ) ... N )  C_  ( 1 ... N
)  /\  N  e.  ( ( y  +  1 ) ... N
) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) `  N )  e.  ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( ( y  +  1 ) ... N
) ) )
266259, 262, 264, 265syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) `  N )  e.  ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( ( y  +  1 ) ... N
) ) )
267256, 266eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  1  e.  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )
" ( ( y  +  1 ) ... N ) ) )
268 fnfvima 6496 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( ( y  +  1 ) ... N
) )  C_  (
1 ... N )  /\  1  e.  ( (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) " (
( y  +  1 ) ... N ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " ( ( y  +  1 ) ... N ) ) ) )
269104, 250, 267, 268syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " ( ( y  +  1 ) ... N ) ) ) )
270 imaco 5640 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( ( y  +  1 ) ... N
) ) )
271269, 270syl6eleqr 2712 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) ) )
272 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  _V  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  Fn  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) ) )
27333, 272ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  Fn  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )
274 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  _V  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } )  Fn  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) ) )
27536, 274ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } )  Fn  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )
276 fvun2 6270 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  Fn  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  /\  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  i^i  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) ) ) )  ->  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ) )
277273, 275, 276mp3an12 1414 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  i^i  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) ) )  =  (/)  /\  ( ( 2nd `  ( 1st `  T
) ) `  1
)  e.  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) )  ->  ( (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ) )
278244, 271, 277syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ) )
27936fvconst2 6469 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =  0 )
280271, 279syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =  0 )
281278, 280eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  0 )
282281oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ) )  =  ( 1  +  0 ) )
283101, 117, 2823eqtr4a 2682 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ) ) )
284 fveq2 6191 . . . . . . . . . . . . 13  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) ) )
285 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ) )
286285oveq2d 6666 . . . . . . . . . . . . 13  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )  =  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ) ) )
287284, 286eqeq12d 2637 . . . . . . . . . . . 12  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )  <->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) )  =  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ) ) ) )
288283, 287syl5ibrcom 237 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) ) )
289288imp 445 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
290289adantlr 751 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n )  =  ( 1  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
291 eldifsn 4317 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  1
) } )  <->  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ) )
292 df-ne 2795 . . . . . . . . . . . . . . 15  |-  ( n  =/=  ( ( 2nd `  ( 1st `  T
) ) `  1
)  <->  -.  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )
293292anbi2i 730 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( 1 ... N )  /\  n  =/=  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  <->  ( n  e.  ( 1 ... N
)  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ) )
294291, 293bitri 264 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  1
) } )  <->  ( n  e.  ( 1 ... N
)  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ) )
295 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) ) )
29633, 295ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )
297296, 38pm3.2i 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )
298 imain 5974 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( ( 1  +  1 ) ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
29948, 298syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( 1  +  1 ) ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) ) ) )
300 fzdisj 12368 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +  1 )  <  ( ( y  +  1 )  +  1 )  ->  (
( ( 1  +  1 ) ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
30155, 300syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( 1  +  1 ) ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
302301imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( ( 1  +  1 ) ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
303302, 59syl6eq 2672 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( ( 1  +  1 ) ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  (/) )
304299, 303sylan9req 2677 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/) )
305 fnun 5997 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
306297, 304, 305sylancr 695 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
307 imaundi 5545 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
308 fzpred 12389 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( 1 ... N )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... N ) ) )
309190, 308syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 1 ... N
)  =  ( { 1 }  u.  (
( 1  +  1 ) ... N ) ) )
310 uncom 3757 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( { 1 }  u.  (
( 1  +  1 ) ... N ) )  =  ( ( ( 1  +  1 ) ... N )  u.  { 1 } )
311309, 310syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( 1 ... N
)  =  ( ( ( 1  +  1 ) ... N )  u.  { 1 } ) )
312311difeq1d 3727 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1 ... N )  \  {
1 } )  =  ( ( ( ( 1  +  1 ) ... N )  u. 
{ 1 } ) 
\  { 1 } ) )
313 difun2 4048 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( 1  +  1 ) ... N
)  u.  { 1 } )  \  {
1 } )  =  ( ( ( 1  +  1 ) ... N )  \  {
1 } )
314 disj3 4021 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 1  +  1 ) ... N
)  i^i  { 1 } )  =  (/)  <->  (
( 1  +  1 ) ... N )  =  ( ( ( 1  +  1 ) ... N )  \  { 1 } ) )
315183, 314mpbi 220 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  +  1 ) ... N )  =  ( ( ( 1  +  1 ) ... N )  \  {
1 } )
316313, 315eqtr4i 2647 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( 1  +  1 ) ... N
)  u.  { 1 } )  \  {
1 } )  =  ( ( 1  +  1 ) ... N
)
317312, 316syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 1 ... N )  \  {
1 } )  =  ( ( 1  +  1 ) ... N
) )
318317adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1 ... N
)  \  { 1 } )  =  ( ( 1  +  1 ) ... N ) )
319 eluzp1p1 11713 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
y  +  1 )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
32066, 319syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  (
1  +  1 ) ) )
321320adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  (
1  +  1 ) ) )
322 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( y  +  1 )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) )  /\  N  e.  ( ZZ>= `  ( y  +  1 ) ) )  ->  ( (
1  +  1 ) ... N )  =  ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
323321, 79, 322syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1  +  1 ) ... N )  =  ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N
) ) )
324318, 323eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1 ... N
)  \  { 1 } )  =  ( ( ( 1  +  1 ) ... (
y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N ) ) )
325324imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { 1 } ) )  =  ( ( 2nd `  ( 1st `  T ) ) "
( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) ) )
326 imadif 5973 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... N
)  \  { 1 } ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  T
) ) " {
1 } ) ) )
32748, 326syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { 1 } ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  \ 
( ( 2nd `  ( 1st `  T ) )
" { 1 } ) ) )
328 eluzfz1 12348 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
329190, 328syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  1  e.  ( 1 ... N ) )
330 fnsnfv 6258 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  1  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  =  ( ( 2nd `  ( 1st `  T
) ) " {
1 } ) )
331103, 329, 330syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  =  ( ( 2nd `  ( 1st `  T ) )
" { 1 } ) )
332331eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" { 1 } )  =  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )
33385, 332difeq12d 3729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  T
) ) " {
1 } ) )  =  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  1
) } ) )
334327, 333eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { 1 } ) )  =  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) } ) )
335334adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { 1 } ) )  =  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) } ) )
336325, 335eqtr3d 2658 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) )
337307, 336syl5eqr 2670 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  1
) } ) )
338337fneq2d 5982 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) ) )  <->  ( (
( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  1
) } ) ) )
339306, 338mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) } ) )
340 incom 3805 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 1 ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  =  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  i^i  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  1
) } ) )
341 disjdif 4040 . . . . . . . . . . . . . . . 16  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  i^i  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  1
) } ) )  =  (/)
342340, 341eqtri 2644 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 1 ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  =  (/)
343 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  _V  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  X.  {
1 } )  Fn 
{ ( ( 2nd `  ( 1st `  T
) ) `  1
) } )
34433, 343ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }
345 fvun1 6269 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  /\  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  /\  ( ( ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 1 ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )
346344, 345mp3an2 1412 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  /\  ( ( ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )
347 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  _V  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  X.  {
0 } )  Fn 
{ ( ( 2nd `  ( 1st `  T
) ) `  1
) } )
34836, 347ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }
349 fvun1 6269 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  /\  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  /\  ( ( ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 1 ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )
350348, 349mp3an2 1412 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  /\  ( ( ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )
351346, 350eqtr4d 2659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  /\  ( ( ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } ) ) `  n ) )
352342, 351mpanr1 719 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } ) ) `  n ) )
353339, 352sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } ) ) `  n ) )
354294, 353sylan2br 493 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  (
n  e.  ( 1 ... N )  /\  -.  n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ) )  ->  ( (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 1 } ) ) `  n )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } ) ) `  n
) )
355354anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } ) ) `  n ) )
356 fzpred 12389 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( y  +  1 ) )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
35766, 356syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
1 ... ( y  +  1 ) )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
358357imaeq2d 5466 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) ) )
359358adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) ) )
360331uneq1d 3766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) " { 1 } )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) ) ) )
361 uncom 3757 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  1
) } )  =  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
362 imaundi 5545 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  ( 1st `  T ) ) "
( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) " { 1 } )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) ) )
363360, 361, 3623eqtr4g 2681 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  u.  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } )  =  ( ( 2nd `  ( 1st `  T ) ) "
( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) ) )
364363adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  1
) } )  =  ( ( 2nd `  ( 1st `  T ) )
" ( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) ) )
365359, 364eqtr4d 2659 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  u.  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) } ) )
366365xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  1
) } )  X. 
{ 1 } ) )
367 xpundir 5172 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  1
) } )  X. 
{ 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) )
368366, 367syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) )
369368uneq1d 3766 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  X.  {
1 } ) )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) )
370 un23 3772 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  X.  {
1 } ) )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) )
371369, 370syl6eq 2672 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) )
372371fveq1d 6193 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) `  n
) )
373372ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 1 } ) ) `  n
) )
374 imaco 5640 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( 1 ... y
) ) )
375 df-ima 5127 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) " (
1 ... y ) )  =  ran  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  |`  (
1 ... y ) )
376 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  y )
)
37775, 376syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  y
) )
378377adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  y
) )
37974, 378eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  y )
)
380 fzss2 12381 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  ( ZZ>= `  y
)  ->  ( 1 ... y )  C_  ( 1 ... N
) )
381379, 380syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... y )  C_  ( 1 ... N
) )
382381resmptd 5452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  |`  ( 1 ... y
) )  =  ( n  e.  ( 1 ... y )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
383172adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  -.  N  e.  ( 1 ... ( N  - 
1 ) ) )
384 fzss2 12381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( 1 ... y )  C_  ( 1 ... ( N  -  1 ) ) )
38575, 384syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
1 ... y )  C_  ( 1 ... ( N  -  1 ) ) )
386385adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... y )  C_  ( 1 ... ( N  -  1 ) ) )
387386sseld 3602 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  e.  ( 1 ... y )  ->  N  e.  ( 1 ... ( N  - 
1 ) ) ) )
388383, 387mtod 189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  -.  N  e.  ( 1 ... y ) )
389 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  N  ->  (
n  e.  ( 1 ... y )  <->  N  e.  ( 1 ... y
) ) )
390389notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  N  ->  ( -.  n  e.  (
1 ... y )  <->  -.  N  e.  ( 1 ... y
) ) )
391388, 390syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  =  N  ->  -.  n  e.  (
1 ... y ) ) )
392391necon2ad 2809 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... y )  ->  n  =/=  N ) )
393392imp 445 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... y
) )  ->  n  =/=  N )
394393, 212syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... y
) )  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  ( n  +  1 ) )
395394mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... y )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  =  ( n  e.  ( 1 ... y )  |->  ( n  +  1 ) ) )
396382, 395eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  |`  ( 1 ... y
) )  =  ( n  e.  ( 1 ... y )  |->  ( n  +  1 ) ) )
397396rneqd 5353 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ran  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )  |`  ( 1 ... y
) )  =  ran  ( n  e.  (
1 ... y )  |->  ( n  +  1 ) ) )
398375, 397syl5eq 2668 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( 1 ... y
) )  =  ran  ( n  e.  (
1 ... y )  |->  ( n  +  1 ) ) )
399 vex 3203 . . . . . . . . . . . . . . . . . . . . . 22  |-  j  e. 
_V
400 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( 1 ... y )  |->  ( n  +  1 ) )  =  ( n  e.  ( 1 ... y
)  |->  ( n  + 
1 ) )
401400elrnmpt 5372 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  _V  ->  (
j  e.  ran  (
n  e.  ( 1 ... y )  |->  ( n  +  1 ) )  <->  E. n  e.  ( 1 ... y ) j  =  ( n  +  1 ) ) )
402399, 401ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  ran  ( n  e.  ( 1 ... y )  |->  ( n  +  1 ) )  <->  E. n  e.  (
1 ... y ) j  =  ( n  + 
1 ) )
403 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  ZZ )
404403adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  e.  ZZ )
405 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ZZ  /\  n  e.  ( 1 ... y ) )  ->  n  e.  ( 1 ... y ) )
406122jctl 564 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ZZ  ->  (
1  e.  ZZ  /\  y  e.  ZZ )
)
407 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( 1 ... y )  ->  n  e.  ZZ )
408407, 122jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  e.  ( 1 ... y )  ->  (
n  e.  ZZ  /\  1  e.  ZZ )
)
409 fzaddel 12375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 1  e.  ZZ  /\  y  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( 1 ... y )  <-> 
( n  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
410406, 408, 409syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ZZ  /\  n  e.  ( 1 ... y ) )  ->  ( n  e.  ( 1 ... y
)  <->  ( n  + 
1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
411405, 410mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  ZZ  /\  n  e.  ( 1 ... y ) )  ->  ( n  + 
1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) )
412 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  =  ( n  + 
1 )  ->  (
j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  <->  ( n  +  1 )  e.  ( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
413411, 412syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  ZZ  /\  n  e.  ( 1 ... y ) )  ->  ( j  =  ( n  +  1 )  ->  j  e.  ( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
414413rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ZZ  ->  ( E. n  e.  (
1 ... y ) j  =  ( n  + 
1 )  ->  j  e.  ( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
415 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  j  e.  ZZ )
416415zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  j  e.  CC )
417 npcan1 10455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  CC  ->  (
( j  -  1 )  +  1 )  =  j )
418416, 417syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  (
( j  -  1 )  +  1 )  =  j )
419418eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  (
( ( j  - 
1 )  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  <->  j  e.  ( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
420419ibir 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  (
( j  -  1 )  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) )
421420adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  ( ( j  -  1 )  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) )
422 peano2zm 11420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ZZ  ->  (
j  -  1 )  e.  ZZ )
423415, 422syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  (
j  -  1 )  e.  ZZ )
424423, 122jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  (
( j  -  1 )  e.  ZZ  /\  1  e.  ZZ )
)
425 fzaddel 12375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 1  e.  ZZ  /\  y  e.  ZZ )  /\  ( ( j  -  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( j  - 
1 )  e.  ( 1 ... y )  <-> 
( ( j  - 
1 )  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
426406, 424, 425syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  ( ( j  -  1 )  e.  ( 1 ... y
)  <->  ( ( j  -  1 )  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
427421, 426mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  ( j  - 
1 )  e.  ( 1 ... y ) )
428416adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  j  e.  CC )
429417eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  e.  CC  ->  j  =  ( ( j  -  1 )  +  1 ) )
430428, 429syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  j  =  ( ( j  -  1 )  +  1 ) )
431 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  ( j  - 
1 )  ->  (
n  +  1 )  =  ( ( j  -  1 )  +  1 ) )
432431eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  ( j  - 
1 )  ->  (
j  =  ( n  +  1 )  <->  j  =  ( ( j  - 
1 )  +  1 ) ) )
433432rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( j  -  1 )  e.  ( 1 ... y )  /\  j  =  ( (
j  -  1 )  +  1 ) )  ->  E. n  e.  ( 1 ... y ) j  =  ( n  +  1 ) )
434427, 430, 433syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  E. n  e.  ( 1 ... y ) j  =  ( n  +  1 ) )
435434ex 450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ZZ  ->  (
j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  E. n  e.  (
1 ... y ) j  =  ( n  + 
1 ) ) )
436414, 435impbid 202 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ZZ  ->  ( E. n  e.  (
1 ... y ) j  =  ( n  + 
1 )  <->  j  e.  ( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
437404, 436syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( E. n  e.  (
1 ... y ) j  =  ( n  + 
1 )  <->  j  e.  ( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
438402, 437syl5bb 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  e.  ran  (
n  e.  ( 1 ... y )  |->  ( n  +  1 ) )  <->  j  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
439438eqrdv 2620 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ran  ( n  e.  (
1 ... y )  |->  ( n  +  1 ) )  =  ( ( 1  +  1 ) ... ( y  +  1 ) ) )
440398, 439eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( 1 ... y
) )  =  ( ( 1  +  1 ) ... ( y  +  1 ) ) )
441440imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " ( 1 ... y ) ) )  =  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
442374, 441syl5eq 2668 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) ) )
443442xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } ) )
444 imaundi 5545 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( { N }  u.  (
( y  +  1 ) ... ( N  -  1 ) ) ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) " { N } )  u.  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) ) )
445 imaco 5640 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " { N } )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " { N } ) )
446 imaco 5640 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... ( N  - 
1 ) ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) ) )
447445, 446uneq12i 3765 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " { N } )  u.  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... ( N  - 
1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " { N } ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " ( ( y  +  1 ) ... ( N  - 
1 ) ) ) ) )
448444, 447eqtri 2644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( { N }  u.  (
( y  +  1 ) ... ( N  -  1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " { N } ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " ( ( y  +  1 ) ... ( N  - 
1 ) ) ) ) )
449195adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
450 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( y  +  1 ) )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( (
y  +  1 ) ... N )  =  ( ( ( y  +  1 ) ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
45178, 449, 450syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... N )  =  ( ( ( y  +  1 ) ... ( N  - 
1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N
) ) )
452201uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( y  +  1 ) ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( ( y  +  1 ) ... ( N  -  1 ) )  u.  { N }
) )
453452adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( y  +  1 ) ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) )  =  ( ( ( y  +  1 ) ... ( N  - 
1 ) )  u. 
{ N } ) )
454451, 453eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... N )  =  ( ( ( y  +  1 ) ... ( N  - 
1 ) )  u. 
{ N } ) )
455 uncom 3757 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  +  1 ) ... ( N  -  1 ) )  u.  { N }
)  =  ( { N }  u.  (
( y  +  1 ) ... ( N  -  1 ) ) )
456454, 455syl6eq 2672 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... N )  =  ( { N }  u.  ( (
y  +  1 ) ... ( N  - 
1 ) ) ) )
457456imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( { N }  u.  ( (
y  +  1 ) ... ( N  - 
1 ) ) ) ) )
458255sneqd 4189 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) `  N ) }  =  { 1 } )
459 fnsnfv 6258 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  Fn  ( 1 ... N
)  /\  N  e.  ( 1 ... N
) )  ->  { ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) `  N ) }  =  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )
" { N }
) )
460258, 252, 459syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) `  N ) }  =  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) " { N } ) )
461458, 460eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  { 1 }  =  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )
" { N }
) )
462461imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" { 1 } )  =  ( ( 2nd `  ( 1st `  T ) ) "
( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )
" { N }
) ) )
463331, 462eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " { N } ) ) )
464463adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  =  ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) " { N } ) ) )
465 df-ima 5127 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  =  ran  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  |`  ( ( y  +  1 ) ... ( N  -  1 ) ) )
466 fzss1 12380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
y  +  1 ) ... ( N  - 
1 ) )  C_  ( 1 ... ( N  -  1 ) ) )
46766, 466syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 ) ... ( N  -  1 ) ) 
C_  ( 1 ... ( N  -  1 ) ) )
468 fzss2 12381 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 1 ... ( N  - 
1 ) )  C_  ( 1 ... N
) )
469195, 468syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( 1 ... ( N  -  1 ) )  C_  ( 1 ... N ) )
470467, 469sylan9ssr 3617 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... ( N  -  1 ) ) 
C_  ( 1 ... N ) )
471470resmptd 5452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  |`  ( ( y  +  1 ) ... ( N  -  1 ) ) )  =  ( n  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
472 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( N  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  ->  N  <_  ( N  -  1 ) )
473170, 472nsyl 135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ph  ->  -.  N  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )
474 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  N  ->  (
n  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  <->  N  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) ) )
475474notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  N  ->  ( -.  n  e.  (
( y  +  1 ) ... ( N  -  1 ) )  <->  -.  N  e.  (
( y  +  1 ) ... ( N  -  1 ) ) ) )
476473, 475syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( n  =  N  ->  -.  n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) ) )
477476con2d 129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  ->  -.  n  =  N ) )
478477imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )  ->  -.  n  =  N )
479478iffalsed 4097 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  ( n  +  1 ) )
480479mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  =  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) 
|->  ( n  +  1 ) ) )
481480adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  =  ( n  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  |->  ( n  +  1 ) ) )
482471, 481eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  |`  ( ( y  +  1 ) ... ( N  -  1 ) ) )  =  ( n  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  |->  ( n  +  1 ) ) )
483482rneqd 5353 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ran  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )  |`  ( ( y  +  1 ) ... ( N  -  1 ) ) )  =  ran  ( n  e.  (
( y  +  1 ) ... ( N  -  1 ) ) 
|->  ( n  +  1 ) ) )
484465, 483syl5eq 2668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  =  ran  ( n  e.  (
( y  +  1 ) ... ( N  -  1 ) ) 
|->  ( n  +  1 ) ) )
485 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) )  ->  j  e.  ZZ )
486485zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) )  ->  j  e.  CC )
487486, 417syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) )  ->  (
( j  -  1 )  +  1 )  =  j )
488487eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) )  ->  (
( ( j  - 
1 )  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) )  <->  j  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) ) )
489488ibir 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) )  ->  (
( j  -  1 )  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) ) )
490489adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) )  ->  (
( j  -  1 )  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) ) )
49153nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  ZZ )
492121, 491anim12ci 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 )  e.  ZZ  /\  ( N  -  1
)  e.  ZZ ) )
493485, 422syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) )  ->  (
j  -  1 )  e.  ZZ )
494493, 122jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) )  ->  (
( j  -  1 )  e.  ZZ  /\  1  e.  ZZ )
)
495 fzaddel 12375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( y  +  1 )  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( j  -  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( j  - 
1 )  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  <-> 
( ( j  - 
1 )  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
496492, 494, 495syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) )  ->  (
( j  -  1 )  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  <->  ( (
j  -  1 )  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) ) )
497490, 496mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) )  ->  (
j  -  1 )  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )
498486, 429syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) )  ->  j  =  ( ( j  -  1 )  +  1 ) )
499498adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) )  ->  j  =  ( ( j  -  1 )  +  1 ) )
500432rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( j  -  1 )  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  /\  j  =  ( (
j  -  1 )  +  1 ) )  ->  E. n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) j  =  ( n  +  1 ) )
501497, 499, 500syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) )  ->  E. n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) j  =  ( n  +  1 ) )
502501ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) )  ->  E. n  e.  (
( y  +  1 ) ... ( N  -  1 ) ) j  =  ( n  +  1 ) ) )
503 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )  ->  n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )
504 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  ->  n  e.  ZZ )
505504, 122jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  ->  (
n  e.  ZZ  /\  1  e.  ZZ )
)
506 fzaddel 12375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( y  +  1 )  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  <-> 
( n  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
507492, 505, 506syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )  ->  (
n  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  <->  ( n  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) ) )
508503, 507mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )  ->  (
n  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  - 
1 )  +  1 ) ) )
509 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  =  ( n  + 
1 )  ->  (
j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) )  <->  ( n  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) ) ) )
510508, 509syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) )  ->  (
j  =  ( n  +  1 )  -> 
j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
511510rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( E. n  e.  (
( y  +  1 ) ... ( N  -  1 ) ) j  =  ( n  +  1 )  -> 
j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
512502, 511impbid 202 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) )  <->  E. n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) j  =  ( n  +  1 ) ) )
513 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  |->  ( n  +  1 ) )  =  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  |->  ( n  + 
1 ) )
514513elrnmpt 5372 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  _V  ->  (
j  e.  ran  (
n  e.  ( ( y  +  1 ) ... ( N  - 
1 ) )  |->  ( n  +  1 ) )  <->  E. n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) j  =  ( n  +  1 ) ) )
515399, 514ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  ran  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  |->  ( n  +  1 ) )  <->  E. n  e.  (
( y  +  1 ) ... ( N  -  1 ) ) j  =  ( n  +  1 ) )
516512, 515syl6bbr 278 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  e.  ( ( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) )  <->  j  e.  ran  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) ) 
|->  ( n  +  1 ) ) ) )
517516eqrdv 2620 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ran  ( n  e.  ( ( y  +  1 ) ... ( N  -  1 ) )  |->  ( n  +  1 ) ) )
51873oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( y  +  1 )  +  1 ) ... (
( N  -  1 )  +  1 ) )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
519518adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( y  +  1 )  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
520484, 517, 5193eqtr2rd 2663 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( y  +  1 )  +  1 ) ... N )  =  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " ( ( y  +  1 ) ... ( N  - 
1 ) ) ) )
521520imaeq2d 5466 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " ( ( y  +  1 ) ... ( N  - 
1 ) ) ) ) )
522464, 521uneq12d 3768 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )
" { N }
) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) ) " ( ( y  +  1 ) ... ( N  - 
1 ) ) ) ) ) )
523448, 457, 5223eqtr4a 2682 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  =  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) ) )
524523xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )  X.  {
0 } ) )
525 xpundir 5172 . . . . . . . . . . . . . . . 16  |-  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  X.  { 0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  X.  {
0 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )
526524, 525syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
527443, 526uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  (
( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) ) )
528 unass 3770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  X.  {
0 } ) )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
529 un23 3772 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T
) ) `  1
) }  X.  {
0 } ) )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } ) )
530528, 529eqtr3i 2646 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 1 ) }  X.  { 0 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } ) )
531527, 530syl6eq 2672 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } ) ) )
532531fveq1d 6193 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } ) ) `  n ) )
533532ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) }  X.  { 0 } ) ) `  n ) )
534355, 373, 5333eqtr4d 2666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )
535 snssi 4339 . . . . . . . . . . . . . . 15  |-  ( 1  e.  CC  ->  { 1 }  C_  CC )
536142, 535ax-mp 5 . . . . . . . . . . . . . 14  |-  { 1 }  C_  CC
537 0cn 10032 . . . . . . . . . . . . . . 15  |-  0  e.  CC
538 snssi 4339 . . . . . . . . . . . . . . 15  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
539537, 538ax-mp 5 . . . . . . . . . . . . . 14  |-  { 0 }  C_  CC
540536, 539unssi 3788 . . . . . . . . . . . . 13  |-  ( { 1 }  u.  {
0 } )  C_  CC
54133fconst 6091 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) ) --> { 1 }
54236fconst 6091 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) --> { 0 }
543541, 542pm3.2i 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } ) : ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) ) --> { 1 }  /\  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) --> { 0 } )
544 fun 6066 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) ) --> { 1 }  /\  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) ) --> { 0 } )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  i^i  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) ) )  =  (/) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) : ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  u.  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) ) ) --> ( { 1 }  u.  { 0 } ) )
545543, 244, 544sylancr 695 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) : ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  u.  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) ) --> ( { 1 }  u.  { 0 } ) )
546 imaundi 5545 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( 1 ... y )  u.  ( ( y  +  1 ) ... N ) ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  u.  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) ) )
54766adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
y  +  1 )  e.  ( ZZ>= `  1
) )
548 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  y )
)  ->  ( 1 ... N )  =  ( ( 1 ... y )  u.  (
( y  +  1 ) ... N ) ) )
549547, 379, 548syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  =  ( ( 1 ... y )  u.  (
( y  +  1 ) ... N ) ) )
550549imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... N ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( 1 ... y )  u.  ( ( y  +  1 ) ... N
) ) ) )
551 f1ofo 6144 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  -> 
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
552 foima 6120 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N )  ->  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
553231, 551, 5523syl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... N
) )  =  ( 1 ... N ) )
554553adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... N ) )  =  ( 1 ... N ) )
555550, 554eqtr3d 2658 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( 1 ... y )  u.  ( ( y  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
556546, 555syl5eqr 2670 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  u.  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
557556feq2d 6031 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) : ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  u.  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) ) --> ( { 1 }  u.  { 0 } )  <->  ( (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) : ( 1 ... N ) --> ( { 1 }  u.  { 0 } ) ) )
558545, 557mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) : ( 1 ... N ) --> ( { 1 }  u.  { 0 } ) )
559558ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  e.  ( { 1 }  u.  {
0 } ) )
560540, 559sseldi 3601 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  e.  CC )
561560addid2d 10237 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
0  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )
562561adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
0  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) )
563534, 562eqtr4d 2659 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( 0  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
56497, 99, 290, 563ifbothda 4123 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) ) )
565564oveq2d 6666 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  ( if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) ) ) )
566 elmapi 7879 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
56729, 566syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
568567ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K ) )
569 elfzonn0 12512 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  e.  NN0 )
570568, 569syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e. 
NN0 )
571570nn0cnd 11353 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  CC )
572571adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  CC )
573142, 537keepel 4155 . . . . . . . . 9  |-  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 )  e.  CC
574573a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 )  e.  CC )
575572, 574, 560addassd 10062 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) ) )
576565, 575eqtr4d 2659 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )  =  ( ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
577576mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) ) )
57895, 577eqtrd 2656 . . . 4  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) ) ) )
579 poimirlem18.4 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  T
)  =  0 )
580579adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  =  0 )
581 elfzle1 12344 . . . . . . . . . 10  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  0  <_  y )
582581adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  0  <_  y )
583580, 582eqbrtrd 4675 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  <_ 
y )
584 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
585579, 584syl6eqel 2709 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  T
)  e.  RR )
586 lenlt 10116 . . . . . . . . 9  |-  ( ( ( 2nd `  T
)  e.  RR  /\  y  e.  RR )  ->  ( ( 2nd `  T
)  <_  y  <->  -.  y  <  ( 2nd `  T
) ) )
587585, 237, 586syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  T
)  <_  y  <->  -.  y  <  ( 2nd `  T
) ) )
588583, 587mpbid 222 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  -.  y  <  ( 2nd `  T
) )
589588iffalsed 4097 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  ( y  +  1 ) )
590589csbeq1d 3540 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ ( y  +  1 )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
591 ovex 6678 . . . . . 6  |-  ( y  +  1 )  e. 
_V
592 oveq2 6658 . . . . . . . . . 10  |-  ( j  =  ( y  +  1 )  ->  (
1 ... j )  =  ( 1 ... (
y  +  1 ) ) )
593592imaeq2d 5466 . . . . . . . . 9  |-  ( j  =  ( y  +  1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )
594593xpeq1d 5138 . . . . . . . 8  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } ) )
595 oveq1 6657 . . . . . . . . . . 11  |-  ( j  =  ( y  +  1 )  ->  (
j  +  1 )  =  ( ( y  +  1 )  +  1 ) )
596595oveq1d 6665 . . . . . . . . . 10  |-  ( j  =  ( y  +  1 )  ->  (
( j  +  1 ) ... N )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
597596imaeq2d 5466 . . . . . . . . 9  |-  ( j  =  ( y  +  1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
598597xpeq1d 5138 . . . . . . . 8  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )
599594, 598uneq12d 3768 . . . . . . 7  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) )
600599oveq2d 6666 . . . . . 6  |-  ( j  =  ( y  +  1 )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
601591, 600csbie 3559 . . . . 5  |-  [_ (
y  +  1 )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
602590, 601syl6eq 2672 . . . 4  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
603 ovexd 6680 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) )  e.  _V )
604 fvexd 6203 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  e.  _V )
605 eqidd 2623 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) )
606 ffn 6045 . . . . . . 7  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) : ( 1 ... N ) --> ( { 1 }  u.  { 0 } )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( 1 ... N ) )
607558, 606syl 17 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  (
1 ... N ) )
608 nfcv 2764 . . . . . . . . . . 11  |-  F/_ n
( 2nd `  ( 1st `  T ) )
609 nfmpt1 4747 . . . . . . . . . . 11  |-  F/_ n
( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )
610608, 609nfco 5287 . . . . . . . . . 10  |-  F/_ n
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) )
611 nfcv 2764 . . . . . . . . . 10  |-  F/_ n
( 1 ... y
)
612610, 611nfima 5474 . . . . . . . . 9  |-  F/_ n
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )
613 nfcv 2764 . . . . . . . . 9  |-  F/_ n { 1 }
614612, 613nfxp 5142 . . . . . . . 8  |-  F/_ n
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )
615 nfcv 2764 . . . . . . . . . 10  |-  F/_ n
( ( y  +  1 ) ... N
)
616610, 615nfima 5474 . . . . . . . . 9  |-  F/_ n
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( ( y  +  1 ) ... N
) )
617 nfcv 2764 . . . . . . . . 9  |-  F/_ n { 0 }
618616, 617nfxp 5142 . . . . . . . 8  |-  F/_ n
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )
619614, 618nfun 3769 . . . . . . 7  |-  F/_ n
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) )
620619dffn5f 6252 . . . . . 6  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  (
1 ... N )  <->  ( (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
621607, 620sylib 208 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
62291, 603, 604, 605, 621offval2 6914 . . . 4  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) )  =  ( n  e.  ( 1 ... N ) 
|->  ( ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) ) )
623578, 602, 6223eqtr4rd 2667 . . 3  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) )  = 
[_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
624623mpteq2dva 4744 . 2  |-  ( ph  ->  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
62522, 624eqtr4d 2659 1  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem17  33426
  Copyright terms: Public domain W3C validator