MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcof Structured version   Visualization version   Unicode version

Theorem cfcof 9096
Description: If there is a cofinal map from  A to  B, then they have the same cofinality. This was used as Definition 11.1 of [TakeutiZaring] p. 100, who defines an equivalence relation cof  ( A ,  B ) and defines our  cf ( B ) as the minimum  B such that cof  ( A ,  B
). (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
cfcof  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  =  ( cf `  B
) ) )
Distinct variable groups:    w, f,
z, A    B, f, w, z

Proof of Theorem cfcof
Dummy variables  c 
g  h  k  r  s  t  x  y  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfcoflem 9094 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  C_  ( cf `  B ) ) )
21imp 445 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  C_  ( cf `  B ) )
3 cff1 9080 . . . . . . 7  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A )
-1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
4 f1f 6101 . . . . . . . . 9  |-  ( g : ( cf `  A
) -1-1-> A  ->  g : ( cf `  A
) --> A )
54anim1i 592 . . . . . . . 8  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) )  ->  (
g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) ) )
65eximi 1762 . . . . . . 7  |-  ( E. g ( g : ( cf `  A
) -1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
)  ->  E. g
( g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
73, 6syl 17 . . . . . 6  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
8 eqid 2622 . . . . . . 7  |-  ( y  e.  ( cf `  A
)  |->  |^| { v  e.  B  |  ( g `
 y )  C_  ( f `  v
) } )  =  ( y  e.  ( cf `  A ) 
|->  |^| { v  e.  B  |  ( g `
 y )  C_  ( f `  v
) } )
98coftr 9095 . . . . . 6  |-  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )
)  ->  ( E. g ( g : ( cf `  A
) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) )  ->  E. h
( h : ( cf `  A ) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A
) r  C_  (
h `  t )
) ) )
107, 9syl5com 31 . . . . 5  |-  ( A  e.  On  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )
)  ->  E. h
( h : ( cf `  A ) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A
) r  C_  (
h `  t )
) ) )
11 eloni 5733 . . . . . . 7  |-  ( B  e.  On  ->  Ord  B )
12 cfon 9077 . . . . . . 7  |-  ( cf `  A )  e.  On
13 eqid 2622 . . . . . . . 8  |-  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) }  =  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) }
14 eqid 2622 . . . . . . . 8  |-  |^| { c  e.  ( cf `  A
)  |  r  C_  ( h `  c
) }  =  |^| { c  e.  ( cf `  A )  |  r 
C_  ( h `  c ) }
15 eqid 2622 . . . . . . . 8  |- OrdIso (  _E  ,  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) } )  = OrdIso (  _E  ,  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) } )
1613, 14, 15cofsmo 9091 . . . . . . 7  |-  ( ( Ord  B  /\  ( cf `  A )  e.  On )  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  E. c  e.  suc  ( cf `  A
) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) ) )
1711, 12, 16sylancl 694 . . . . . 6  |-  ( B  e.  On  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  E. c  e.  suc  ( cf `  A
) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) ) )
18 3simpb 1059 . . . . . . . . . . . 12  |-  ( ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  (
k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
) )
1918eximi 1762 . . . . . . . . . . 11  |-  ( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  E. k
( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )
2012onsuci 7038 . . . . . . . . . . . . 13  |-  suc  ( cf `  A )  e.  On
2120oneli 5835 . . . . . . . . . . . 12  |-  ( c  e.  suc  ( cf `  A )  ->  c  e.  On )
22 cfflb 9081 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  c  e.  On )  ->  ( E. k ( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  ( cf `  B )  C_  c
) )
2321, 22sylan2 491 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  -> 
( E. k ( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  ( cf `  B )  C_  c
) )
2419, 23syl5 34 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  -> 
( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  c ) )
2524imp 445 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
( cf `  B
)  C_  c )
26 onsssuc 5813 . . . . . . . . . . . 12  |-  ( ( c  e.  On  /\  ( cf `  A )  e.  On )  -> 
( c  C_  ( cf `  A )  <->  c  e.  suc  ( cf `  A
) ) )
2721, 12, 26sylancl 694 . . . . . . . . . . 11  |-  ( c  e.  suc  ( cf `  A )  ->  (
c  C_  ( cf `  A )  <->  c  e.  suc  ( cf `  A
) ) )
2827ibir 257 . . . . . . . . . 10  |-  ( c  e.  suc  ( cf `  A )  ->  c  C_  ( cf `  A
) )
2928ad2antlr 763 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
c  C_  ( cf `  A ) )
3025, 29sstrd 3613 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
( cf `  B
)  C_  ( cf `  A ) )
3130exp31 630 . . . . . . 7  |-  ( B  e.  On  ->  (
c  e.  suc  ( cf `  A )  -> 
( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) ) )
3231rexlimdv 3030 . . . . . 6  |-  ( B  e.  On  ->  ( E. c  e.  suc  ( cf `  A ) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3317, 32syld 47 . . . . 5  |-  ( B  e.  On  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3410, 33sylan9 689 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3534imp 445 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  B
)  C_  ( cf `  A ) )
362, 35eqssd 3620 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  =  ( cf `  B ) )
3736ex 450 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  =  ( cf `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   |^|cint 4475    |-> cmpt 4729    _E cep 5028   Ord word 5722   Oncon0 5723   suc csuc 5725   -->wf 5884   -1-1->wf1 5885   ` cfv 5888   Smo wsmo 7442  OrdIsocoi 8414   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-card 8765  df-cf 8767  df-acn 8768
This theorem is referenced by:  alephsing  9098
  Copyright terms: Public domain W3C validator