Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem19 Structured version   Visualization version   Unicode version

Theorem poimirlem19 33428
Description: Lemma for poimir 33442 establishing the vertices of the simplex in poimirlem20 33429. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem22.2  |-  ( ph  ->  T  e.  S )
poimirlem22.3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/=  0 )
poimirlem21.4  |-  ( ph  ->  ( 2nd `  T
)  =  N )
Assertion
Ref Expression
poimirlem19  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
Distinct variable groups:    f, j, n, p, t, y    ph, j, n, y    j, F, n, y    j, N, n, y    T, j, n, y    ph, p, t    f, K, j, n, p, t   
f, N, p, t    T, f, p    f, F, p, t    t, T    S, j, n, p, t, y
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem19
StepHypRef Expression
1 poimirlem22.2 . . 3  |-  ( ph  ->  T  e.  S )
2 fveq2 6191 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
32breq2d 4665 . . . . . . . . . 10  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
43ifbid 4108 . . . . . . . . 9  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
54csbeq1d 3540 . . . . . . . 8  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
6 fveq2 6191 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
76fveq2d 6195 . . . . . . . . . 10  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
86fveq2d 6195 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
98imaeq1d 5465 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
109xpeq1d 5138 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
118imaeq1d 5465 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
1211xpeq1d 5138 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
1310, 12uneq12d 3768 . . . . . . . . . 10  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
147, 13oveq12d 6668 . . . . . . . . 9  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
1514csbeq2dv 3992 . . . . . . . 8  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
165, 15eqtrd 2656 . . . . . . 7  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
1716mpteq2dv 4745 . . . . . 6  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
1817eqeq2d 2632 . . . . 5  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
19 poimirlem22.s . . . . 5  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
2018, 19elrab2 3366 . . . 4  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
2120simprbi 480 . . 3  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
221, 21syl 17 . 2  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
23 elrabi 3359 . . . . . . . . . . . 12  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
2423, 19eleq2s 2719 . . . . . . . . . . 11  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
251, 24syl 17 . . . . . . . . . 10  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
26 xp1st 7198 . . . . . . . . . 10  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
2725, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
28 xp1st 7198 . . . . . . . . 9  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
2927, 28syl 17 . . . . . . . 8  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
30 elmapfn 7880 . . . . . . . 8  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
3129, 30syl 17 . . . . . . 7  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
3231adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 1st `  ( 1st `  T
) )  Fn  (
1 ... N ) )
33 1ex 10035 . . . . . . . . . 10  |-  1  e.  _V
34 fnconstg 6093 . . . . . . . . . 10  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) ) )
3533, 34ax-mp 5 . . . . . . . . 9  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )
36 c0ex 10034 . . . . . . . . . 10  |-  0  e.  _V
37 fnconstg 6093 . . . . . . . . . 10  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) )
3836, 37ax-mp 5 . . . . . . . . 9  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )
3935, 38pm3.2i 471 . . . . . . . 8  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
40 xp2nd 7199 . . . . . . . . . . . . 13  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
4127, 40syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
42 fvex 6201 . . . . . . . . . . . . 13  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
43 f1oeq1 6127 . . . . . . . . . . . . 13  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
4442, 43elab 3350 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
4541, 44sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
46 dff1o3 6143 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  T ) ) ) )
4746simprbi 480 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  T ) ) )
4845, 47syl 17 . . . . . . . . . 10  |-  ( ph  ->  Fun  `' ( 2nd `  ( 1st `  T
) ) )
49 imain 5974 . . . . . . . . . 10  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) ) )
5048, 49syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) ) )
51 elfznn0 12433 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  NN0 )
5251nn0red 11352 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  RR )
5352ltp1d 10954 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  <  ( y  +  1 ) )
54 fzdisj 12368 . . . . . . . . . . . 12  |-  ( y  <  ( y  +  1 )  ->  (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... N ) )  =  (/) )
5553, 54syl 17 . . . . . . . . . . 11  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... N ) )  =  (/) )
5655imaeq2d 5466 . . . . . . . . . 10  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
57 ima0 5481 . . . . . . . . . 10  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
5856, 57syl6eq 2672 . . . . . . . . 9  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... N
) ) )  =  (/) )
5950, 58sylan9req 2677 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  =  (/) )
60 fnun 5997 . . . . . . . 8  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) ) )
6139, 59, 60sylancr 695 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) ) )
62 imaundi 5545 . . . . . . . . 9  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... y )  u.  (
( y  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
63 nn0p1nn 11332 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN0  ->  ( y  +  1 )  e.  NN )
6451, 63syl 17 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  NN )
65 nnuz 11723 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
6664, 65syl6eleq 2711 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  ( ZZ>= `  1
) )
6766adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
y  +  1 )  e.  ( ZZ>= `  1
) )
68 poimir.0 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN )
6968nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  CC )
70 npcan1 10455 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
7169, 70syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
7271adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  =  N )
73 elfzuz3 12339 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  y
) )
74 peano2uz 11741 . . . . . . . . . . . . . . 15  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  y )
)
7573, 74syl 17 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  y
) )
7675adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  y
) )
7772, 76eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  y )
)
78 fzsplit2 12366 . . . . . . . . . . . 12  |-  ( ( ( y  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  y )
)  ->  ( 1 ... N )  =  ( ( 1 ... y )  u.  (
( y  +  1 ) ... N ) ) )
7967, 77, 78syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  =  ( ( 1 ... y )  u.  (
( y  +  1 ) ... N ) ) )
8079imaeq2d 5466 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  u.  ( ( y  +  1 ) ... N
) ) ) )
81 f1ofo 6144 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
82 foima 6120 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
8345, 81, 823syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
8483adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
8580, 84eqtr3d 2658 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  u.  ( ( y  +  1 ) ... N
) ) )  =  ( 1 ... N
) )
8662, 85syl5eqr 2670 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
8786fneq2d 5982 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) )  <->  ( (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) ) )
8861, 87mpbid 222 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( 1 ... N ) )
89 ovexd 6680 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  e. 
_V )
90 inidm 3822 . . . . . 6  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
91 eqidd 2623 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  =  ( ( 1st `  ( 1st `  T ) ) `
 n ) )
92 eqidd 2623 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n ) )
9332, 88, 89, 89, 90, 91, 92offval 6904 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) ) )
94 elmapi 7879 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
9529, 94syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
9695ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K ) )
97 elfzonn0 12512 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  e.  NN0 )
9896, 97syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e. 
NN0 )
9998nn0cnd 11353 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  CC )
10099adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  CC )
101 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
102 0cn 10032 . . . . . . . . . 10  |-  0  e.  CC
103101, 102keepel 4155 . . . . . . . . 9  |-  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 )  e.  CC
104103a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 )  e.  CC )
105 snssi 4339 . . . . . . . . . . 11  |-  ( 1  e.  CC  ->  { 1 }  C_  CC )
106101, 105ax-mp 5 . . . . . . . . . 10  |-  { 1 }  C_  CC
107 snssi 4339 . . . . . . . . . . 11  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
108102, 107ax-mp 5 . . . . . . . . . 10  |-  { 0 }  C_  CC
109106, 108unssi 3788 . . . . . . . . 9  |-  ( { 1 }  u.  {
0 } )  C_  CC
11033fconst 6091 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) ) --> { 1 }
11136fconst 6091 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) --> { 0 }
112110, 111pm3.2i 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } ) : ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) ) --> { 1 }  /\  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) --> { 0 } )
113 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  n  e.  ( ( 1  +  1 ) ... N
) )  ->  n  e.  ( ( 1  +  1 ) ... N
) )
11468nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  N  e.  ZZ )
115 1z 11407 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  ZZ
116 peano2z 11418 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1  e.  ZZ  ->  (
1  +  1 )  e.  ZZ )
117115, 116ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  +  1 )  e.  ZZ
118114, 117jctil 560 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1  +  1 )  e.  ZZ  /\  N  e.  ZZ ) )
119 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  n  e.  ZZ )
120119, 115jctir 561 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  (
n  e.  ZZ  /\  1  e.  ZZ )
)
121 fzsubel 12377 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( 1  +  1 )  e.  ZZ  /\  N  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( ( 1  +  1 ) ... N )  <-> 
( n  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( N  - 
1 ) ) ) )
122118, 120, 121syl2an 494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  n  e.  ( ( 1  +  1 ) ... N
) )  ->  (
n  e.  ( ( 1  +  1 ) ... N )  <->  ( n  -  1 )  e.  ( ( ( 1  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
123113, 122mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  n  e.  ( ( 1  +  1 ) ... N
) )  ->  (
n  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( N  -  1 ) ) )
124101, 101pncan3oi 10297 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  +  1 )  -  1 )  =  1
125124oveq1i 6660 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1  +  1 )  -  1 ) ... ( N  - 
1 ) )  =  ( 1 ... ( N  -  1 ) )
126123, 125syl6eleq 2711 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  n  e.  ( ( 1  +  1 ) ... N
) )  ->  (
n  -  1 )  e.  ( 1 ... ( N  -  1 ) ) )
127126ralrimiva 2966 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. n  e.  ( ( 1  +  1 ) ... N ) ( n  -  1 )  e.  ( 1 ... ( N  - 
1 ) ) )
128 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  y  e.  ( 1 ... ( N  -  1 ) ) )
129 peano2zm 11420 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
130114, 129syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
131130, 115jctil 560 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( 1  e.  ZZ  /\  ( N  -  1 )  e.  ZZ ) )
132 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ( 1 ... ( N  -  1 ) )  ->  y  e.  ZZ )
133132, 115jctir 561 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 1 ... ( N  -  1 ) )  ->  (
y  e.  ZZ  /\  1  e.  ZZ )
)
134 fzaddel 12375 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( y  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( y  e.  ( 1 ... ( N  -  1 ) )  <-> 
( y  +  1 )  e.  ( ( 1  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
135131, 133, 134syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
y  e.  ( 1 ... ( N  - 
1 ) )  <->  ( y  +  1 )  e.  ( ( 1  +  1 ) ... (
( N  -  1 )  +  1 ) ) ) )
136128, 135mpbid 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
y  +  1 )  e.  ( ( 1  +  1 ) ... ( ( N  - 
1 )  +  1 ) ) )
13771oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1  +  1 ) ... (
( N  -  1 )  +  1 ) )  =  ( ( 1  +  1 ) ... N ) )
138137adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( 1  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( 1  +  1 ) ... N ) )
139136, 138eleqtrd 2703 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
y  +  1 )  e.  ( ( 1  +  1 ) ... N ) )
140119zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  n  e.  CC )
141132zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 1 ... ( N  -  1 ) )  ->  y  e.  CC )
142 subadd2 10285 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  y  e.  CC )  ->  (
( n  -  1 )  =  y  <->  ( y  +  1 )  =  n ) )
143101, 142mp3an2 1412 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  e.  CC  /\  y  e.  CC )  ->  ( ( n  - 
1 )  =  y  <-> 
( y  +  1 )  =  n ) )
144 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  ( n  - 
1 )  <->  ( n  -  1 )  =  y )
145 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  ( y  +  1 )  <->  ( y  +  1 )  =  n )
146143, 144, 1453bitr4g 303 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  e.  CC  /\  y  e.  CC )  ->  ( y  =  ( n  -  1 )  <-> 
n  =  ( y  +  1 ) ) )
147140, 141, 146syl2anr 495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ( 1 ... ( N  - 
1 ) )  /\  n  e.  ( (
1  +  1 ) ... N ) )  ->  ( y  =  ( n  -  1 )  <->  n  =  (
y  +  1 ) ) )
148147ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( 1 ... ( N  -  1 ) )  ->  A. n  e.  ( ( 1  +  1 ) ... N
) ( y  =  ( n  -  1 )  <->  n  =  (
y  +  1 ) ) )
149148adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  A. n  e.  ( ( 1  +  1 ) ... N
) ( y  =  ( n  -  1 )  <->  n  =  (
y  +  1 ) ) )
150 reu6i 3397 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  +  1 )  e.  ( ( 1  +  1 ) ... N )  /\  A. n  e.  ( ( 1  +  1 ) ... N ) ( y  =  ( n  -  1 )  <->  n  =  ( y  +  1 ) ) )  ->  E! n  e.  (
( 1  +  1 ) ... N ) y  =  ( n  -  1 ) )
151139, 149, 150syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  E! n  e.  ( (
1  +  1 ) ... N ) y  =  ( n  - 
1 ) )
152151ralrimiva 2966 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. y  e.  ( 1 ... ( N  -  1 ) ) E! n  e.  ( ( 1  +  1 ) ... N ) y  =  ( n  -  1 ) )
153 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )  =  ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) )
154153f1ompt 6382 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) ) : ( ( 1  +  1 ) ... N ) -1-1-onto-> ( 1 ... ( N  - 
1 ) )  <->  ( A. n  e.  ( (
1  +  1 ) ... N ) ( n  -  1 )  e.  ( 1 ... ( N  -  1 ) )  /\  A. y  e.  ( 1 ... ( N  - 
1 ) ) E! n  e.  ( ( 1  +  1 ) ... N ) y  =  ( n  - 
1 ) ) )
155127, 152, 154sylanbrc 698 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( n  e.  ( ( 1  +  1 ) ... N ) 
|->  ( n  -  1 ) ) : ( ( 1  +  1 ) ... N ) -1-1-onto-> ( 1 ... ( N  -  1 ) ) )
156 f1osng 6177 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  _V  /\  N  e.  NN )  ->  { <. 1 ,  N >. } : { 1 } -1-1-onto-> { N } )
15733, 68, 156sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  { <. 1 ,  N >. } : { 1 } -1-1-onto-> { N } )
15868nnred 11035 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  RR )
159158ltm1d 10956 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N  -  1 )  <  N )
160130zred 11482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( N  -  1 )  e.  RR )
161160, 158ltnled 10184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( N  - 
1 )  <  N  <->  -.  N  <_  ( N  -  1 ) ) )
162159, 161mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  -.  N  <_  ( N  -  1 ) )
163 elfzle2 12345 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  N  <_  ( N  -  1 ) )
164162, 163nsyl 135 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  -.  N  e.  ( 1 ... ( N  -  1 ) ) )
165 disjsn 4246 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( 1 ... ( N  - 
1 ) ) )
166164, 165sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/) )
167 1re 10039 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
168167ltp1i 10927 . . . . . . . . . . . . . . . . . . . . 21  |-  1  <  ( 1  +  1 )
169117zrei 11383 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  +  1 )  e.  RR
170167, 169ltnlei 10158 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  <  ( 1  +  1 )  <->  -.  (
1  +  1 )  <_  1 )
171168, 170mpbi 220 . . . . . . . . . . . . . . . . . . . 20  |-  -.  (
1  +  1 )  <_  1
172 elfzle1 12344 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  ( ( 1  +  1 ) ... N )  ->  (
1  +  1 )  <_  1 )
173171, 172mto 188 . . . . . . . . . . . . . . . . . . 19  |-  -.  1  e.  ( ( 1  +  1 ) ... N
)
174 disjsn 4246 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1  +  1 ) ... N
)  i^i  { 1 } )  =  (/)  <->  -.  1  e.  ( (
1  +  1 ) ... N ) )
175173, 174mpbir 221 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  +  1 ) ... N )  i^i  { 1 } )  =  (/)
176 f1oun 6156 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) ) : ( ( 1  +  1 ) ... N
)
-1-1-onto-> ( 1 ... ( N  -  1 ) )  /\  { <. 1 ,  N >. } : { 1 } -1-1-onto-> { N } )  /\  ( ( ( ( 1  +  1 ) ... N )  i^i 
{ 1 } )  =  (/)  /\  (
( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/) ) )  ->  (
( n  e.  ( ( 1  +  1 ) ... N ) 
|->  ( n  -  1 ) )  u.  { <. 1 ,  N >. } ) : ( ( ( 1  +  1 ) ... N )  u.  { 1 } ) -1-1-onto-> ( ( 1 ... ( N  -  1 ) )  u.  { N } ) )
177175, 176mpanr1 719 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) ) : ( ( 1  +  1 ) ... N
)
-1-1-onto-> ( 1 ... ( N  -  1 ) )  /\  { <. 1 ,  N >. } : { 1 } -1-1-onto-> { N } )  /\  ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/) )  ->  ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )  u.  { <. 1 ,  N >. } ) : ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) -1-1-onto-> ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
178155, 157, 166, 177syl21anc 1325 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) )  u. 
{ <. 1 ,  N >. } ) : ( ( ( 1  +  1 ) ... N
)  u.  { 1 } ) -1-1-onto-> ( ( 1 ... ( N  -  1 ) )  u.  { N } ) )
179 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  1  ->  (
n  e.  ( ( 1  +  1 ) ... N )  <->  1  e.  ( ( 1  +  1 ) ... N
) ) )
180173, 179mtbiri 317 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  1  ->  -.  n  e.  ( (
1  +  1 ) ... N ) )
181180necon2ai 2823 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  n  =/=  1 )
182 ifnefalse 4098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =/=  1  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  ( n  - 
1 ) )
183181, 182syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  ( n  - 
1 ) )
184183mpteq2ia 4740 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ( 1  +  1 ) ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  =  ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )
185184uneq1i 3763 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  u.  { <. 1 ,  N >. } )  =  ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )  u.  { <. 1 ,  N >. } )
18633a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  1  e.  _V )
187 ssv 3625 . . . . . . . . . . . . . . . . . . . 20  |-  NN  C_  _V
188187, 68sseldi 3601 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  _V )
18968, 65syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
190 fzpred 12389 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( 1 ... N )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... N ) ) )
191189, 190syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1 ... N
)  =  ( { 1 }  u.  (
( 1  +  1 ) ... N ) ) )
192 uncom 3757 . . . . . . . . . . . . . . . . . . . 20  |-  ( { 1 }  u.  (
( 1  +  1 ) ... N ) )  =  ( ( ( 1  +  1 ) ... N )  u.  { 1 } )
193191, 192syl6req 2673 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 1  +  1 ) ... N )  u.  {
1 } )  =  ( 1 ... N
) )
194 iftrue 4092 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  N )
195194adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  n  = 
1 )  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  N )
196186, 188, 193, 195fmptapd 6437 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )  u.  { <. 1 ,  N >. } )  =  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
197185, 196syl5eqr 2670 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) )  u. 
{ <. 1 ,  N >. } )  =  ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) )
19871, 189eqeltrd 2701 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
199 uzid 11702 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
200 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
201130, 199, 2003syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
20271, 201eqeltrrd 2702 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
203 fzsplit2 12366 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
204198, 202, 203syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) ) )
20571oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  ( N ... N ) )
206 fzsn 12383 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
207114, 206syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N ... N
)  =  { N } )
208205, 207eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  { N } )
209208uneq2d 3767 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
210204, 209eqtr2d 2657 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  { N } )  =  ( 1 ... N ) )
211197, 193, 210f1oeq123d 6133 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )  u.  { <. 1 ,  N >. } ) : ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) -1-1-onto-> ( ( 1 ... ( N  -  1 ) )  u.  { N }
)  <->  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
212178, 211mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) )
213 f1oco 6159 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  /\  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
21445, 212, 213syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
215 dff1o3 6143 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  <->  ( (
( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N )  /\  Fun  `' ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) ) )
216215simprbi 480 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  ->  Fun  `' ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) )
217 imain 5974 . . . . . . . . . . . . . 14  |-  ( Fun  `' ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) )  -> 
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( 1 ... ( y  +  1 ) )  i^i  (
( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  i^i  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
218214, 216, 2173syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( 1 ... ( y  +  1 ) )  i^i  (
( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  i^i  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
21964nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  RR )
220219ltp1d 10954 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  <  ( ( y  +  1 )  +  1 ) )
221 fzdisj 12368 . . . . . . . . . . . . . . . 16  |-  ( ( y  +  1 )  <  ( ( y  +  1 )  +  1 )  ->  (
( 1 ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
222220, 221syl 17 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 1 ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
223222imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" (/) ) )
224 ima0 5481 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " (/) )  =  (/)
225223, 224syl6eq 2672 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/) )
226218, 225sylan9req 2677 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  i^i  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/) )
227 fun 6066 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) ) --> { 1 }  /\  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) : ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) --> { 0 } )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  i^i  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  (/) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) : ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  u.  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) --> ( { 1 }  u.  { 0 } ) )
228112, 226, 227sylancr 695 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) : ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  u.  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) ) --> ( { 1 }  u.  { 0 } ) )
229 imaundi 5545 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( 1 ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  u.  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
23064peano2nnd 11037 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  NN )
231230, 65syl6eleq 2711 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
) )
232231adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
) )
233 eluzp1p1 11713 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( y  +  1 ) ) )
23473, 233syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) ) )
235234adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) ) )
23672, 235eqeltrrd 2702 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  ( y  +  1 ) ) )
237 fzsplit2 12366 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  +  1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( y  +  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
238232, 236, 237syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  =  ( ( 1 ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
239238imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... N ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( 1 ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N
) ) ) )
240 f1ofo 6144 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  -> 
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
241 foima 6120 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N )  ->  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
242214, 240, 2413syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... N
) )  =  ( 1 ... N ) )
243242adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... N ) )  =  ( 1 ... N ) )
244239, 243eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( 1 ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
245229, 244syl5eqr 2670 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  u.  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
246245feq2d 6031 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) : ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  u.  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) ) --> ( { 1 }  u.  { 0 } )  <->  ( (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) : ( 1 ... N ) --> ( { 1 }  u.  { 0 } ) ) )
247228, 246mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) : ( 1 ... N ) --> ( { 1 }  u.  { 0 } ) )
248247ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  e.  ( { 1 }  u.  {
0 } ) )
249109, 248sseldi 3601 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  e.  CC )
250100, 104, 249subadd23d 10414 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 ) ) ) )
251 oveq2 6658 . . . . . . . . . 10  |-  ( 1  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  1 )  =  ( ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )
252251eqeq1d 2624 . . . . . . . . 9  |-  ( 1  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 )  ->  (
( ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  -  1 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n )  <->  ( (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )
253 oveq2 6658 . . . . . . . . . 10  |-  ( 0  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  0 )  =  ( ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )
254253eqeq1d 2624 . . . . . . . . 9  |-  ( 0  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 )  ->  (
( ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  -  0 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n )  <->  ( (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )
255 1m1e0 11089 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
256 f1ofn 6138 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
25745, 256syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
258257adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
259 imassrn 5477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " (
1 ... ( y  +  1 ) ) ) 
C_  ran  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
260 f1of 6137 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  ->  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) )
261212, 260syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) : ( 1 ... N
) --> ( 1 ... N ) )
262 frn 6053 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) : ( 1 ... N ) --> ( 1 ... N
)  ->  ran  ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  C_  ( 1 ... N ) )
263261, 262syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ran  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) 
C_  ( 1 ... N ) )
264259, 263syl5ss 3614 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" ( 1 ... ( y  +  1 ) ) )  C_  ( 1 ... N
) )
265264adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( 1 ... (
y  +  1 ) ) )  C_  (
1 ... N ) )
266 eqidd 2623 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  =  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
267 eluzfz1 12348 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
268189, 267syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  1  e.  ( 1 ... N ) )
269266, 195, 268, 68fvmptd 6288 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) `
 1 )  =  N )
270269adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) ` 
1 )  =  N )
271 f1ofn 6138 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  ->  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )  Fn  ( 1 ... N ) )
272212, 271syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  Fn  ( 1 ... N
) )
273272adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  Fn  (
1 ... N ) )
274 fzss2 12381 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( ZZ>= `  (
y  +  1 ) )  ->  ( 1 ... ( y  +  1 ) )  C_  ( 1 ... N
) )
275236, 274syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... ( y  +  1 ) )  C_  ( 1 ... N
) )
276 eluzfz1 12348 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
27766, 276syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
278277adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
279 fnfvima 6496 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  Fn  ( 1 ... N
)  /\  ( 1 ... ( y  +  1 ) )  C_  ( 1 ... N
)  /\  1  e.  ( 1 ... (
y  +  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) ` 
1 )  e.  ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( 1 ... (
y  +  1 ) ) ) )
280273, 275, 278, 279syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) ` 
1 )  e.  ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( 1 ... (
y  +  1 ) ) ) )
281270, 280eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" ( 1 ... ( y  +  1 ) ) ) )
282 fnfvima 6496 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( 1 ... (
y  +  1 ) ) )  C_  (
1 ... N )  /\  N  e.  ( (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " (
1 ... ( y  +  1 ) ) ) )  ->  ( ( 2nd `  ( 1st `  T
) ) `  N
)  e.  ( ( 2nd `  ( 1st `  T ) ) "
( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" ( 1 ... ( y  +  1 ) ) ) ) )
283258, 265, 281, 282syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " ( 1 ... ( y  +  1 ) ) ) ) )
284 imaco 5640 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( 1 ... (
y  +  1 ) ) ) )
285283, 284syl6eleqr 2712 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) ) )
286 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  _V  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  Fn  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) ) )
28733, 286ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  Fn  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )
288 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  _V  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } )  Fn  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) ) )
28936, 288ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } )  Fn  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )
290 fvun1 6269 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  /\  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  i^i  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) ) ) )  ->  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  N ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  N ) ) )
291287, 289, 290mp3an12 1414 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  i^i  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  (/)  /\  ( ( 2nd `  ( 1st `  T
) ) `  N
)  e.  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) ) )  ->  ( (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  N ) ) )
292226, 285, 291syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  N ) ) )
29333fvconst2 6469 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =  1 )
294285, 293syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =  1 )
295292, 294eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  1 )
296295oveq1d 6665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  =  ( 1  -  1 ) )
297 fzss1 12380 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
y  +  1 ) ... N )  C_  ( 1 ... N
) )
29866, 297syl 17 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N ) )
299298adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N ) )
300 eluzfz2 12349 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  (
y  +  1 ) )  ->  N  e.  ( ( y  +  1 ) ... N
) )
301236, 300syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ( y  +  1 ) ... N
) )
302 fnfvima 6496 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N )  /\  N  e.  ( ( y  +  1 ) ... N
) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
303258, 299, 301, 302syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
304 fvun2 6270 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  N ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ) )
30535, 38, 304mp3an12 1414 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) )  =  (/)  /\  ( ( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) ) )
30659, 303, 305syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
30736fvconst2 6469 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =  0 )
308303, 307syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  0 )
309306, 308eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =  0 )
310255, 296, 3093eqtr4a 2682 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
311 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) ) )
312311oveq1d 6665 . . . . . . . . . . . . 13  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  1 )  =  ( ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 ) )
313 fveq2 6191 . . . . . . . . . . . . 13  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
314312, 313eqeq12d 2637 . . . . . . . . . . . 12  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  1 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n )  <->  ( (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) ) )
315310, 314syl5ibrcom 237 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  =  ( ( 2nd `  ( 1st `  T ) ) `  N )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  1 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )
316315imp 445 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  1 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
317316adantlr 751 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  ->  ( ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  1 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
318249subid1d 10381 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  0 )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )
319318adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  0 )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )
320 eldifsn 4317 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  N
) } )  <->  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ) )
321 df-ne 2795 . . . . . . . . . . . . . . 15  |-  ( n  =/=  ( ( 2nd `  ( 1st `  T
) ) `  N
)  <->  -.  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )
322321anbi2i 730 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( 1 ... N )  /\  n  =/=  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  <->  ( n  e.  ( 1 ... N
)  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
323320, 322bitri 264 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  N
) } )  <->  ( n  e.  ( 1 ... N
)  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
324 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) ) )
32536, 324ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )
32635, 325pm3.2i 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) )
327 imain 5974 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... ( N  - 
1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) ) )
32848, 327syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... ( N  -  1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) ) ) )
329 fzdisj 12368 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  <  ( y  +  1 )  ->  (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... ( N  - 
1 ) ) )  =  (/) )
33053, 329syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... ( N  - 
1 ) ) )  =  (/) )
331330imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... ( N  -  1 ) ) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
332331, 57syl6eq 2672 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... ( N  -  1 ) ) ) )  =  (/) )
333328, 332sylan9req 2677 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) )  =  (/) )
334 fnun 5997 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) ) )
335326, 333, 334sylancr 695 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) ) )
336 imaundi 5545 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... y )  u.  (
( y  +  1 ) ... ( N  -  1 ) ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) )
337204, 209eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
338337difeq1d 3727 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 1 ... N )  \  { N } )  =  ( ( ( 1 ... ( N  -  1 ) )  u.  { N } )  \  { N } ) )
339 difun2 4048 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1 ... ( N  -  1 ) )  u.  { N } )  \  { N } )  =  ( ( 1 ... ( N  -  1 ) )  \  { N } )
340338, 339syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1 ... N )  \  { N } )  =  ( ( 1 ... ( N  -  1 ) )  \  { N } ) )
341 difsn 4328 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  N  e.  ( 1 ... ( N  - 
1 ) )  -> 
( ( 1 ... ( N  -  1 ) )  \  { N } )  =  ( 1 ... ( N  -  1 ) ) )
342164, 341syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  \  { N } )  =  ( 1 ... ( N  -  1 ) ) )
343340, 342eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 1 ... N )  \  { N } )  =  ( 1 ... ( N  -  1 ) ) )
344343adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1 ... N
)  \  { N } )  =  ( 1 ... ( N  -  1 ) ) )
34573adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  y
) )
346 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( N  -  1 )  e.  ( ZZ>= `  y
) )  ->  (
1 ... ( N  - 
1 ) )  =  ( ( 1 ... y )  u.  (
( y  +  1 ) ... ( N  -  1 ) ) ) )
34767, 345, 346syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... ( N  - 
1 ) )  =  ( ( 1 ... y )  u.  (
( y  +  1 ) ... ( N  -  1 ) ) ) )
348344, 347eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1 ... N
)  \  { N } )  =  ( ( 1 ... y
)  u.  ( ( y  +  1 ) ... ( N  - 
1 ) ) ) )
349348imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { N } ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... y
)  u.  ( ( y  +  1 ) ... ( N  - 
1 ) ) ) ) )
350 imadif 5973 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... N
)  \  { N } ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  T
) ) " { N } ) ) )
35148, 350syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { N } ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... N
) )  \  (
( 2nd `  ( 1st `  T ) )
" { N }
) ) )
352 elfz1end 12371 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  <->  N  e.  ( 1 ... N
) )
35368, 352sylib 208 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  N  e.  ( 1 ... N ) )
354 fnsnfv 6258 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  N  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  =  ( ( 2nd `  ( 1st `  T
) ) " { N } ) )
355257, 353, 354syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  { ( ( 2nd `  ( 1st `  T
) ) `  N
) }  =  ( ( 2nd `  ( 1st `  T ) )
" { N }
) )
356355eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" { N }
)  =  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } )
35783, 356difeq12d 3729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  T
) ) " { N } ) )  =  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) )
358351, 357eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { N } ) )  =  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  N
) } ) )
359358adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { N } ) )  =  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  N
) } ) )
360349, 359eqtr3d 2658 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  u.  ( ( y  +  1 ) ... ( N  -  1 ) ) ) )  =  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) )
361336, 360syl5eqr 2670 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) ) )  =  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  N
) } ) )
362361fneq2d 5982 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) ) )  <->  ( (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  Fn  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  N
) } ) ) )
363335, 362mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) )  Fn  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  N ) } ) )
364 incom 3805 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 N ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  =  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  i^i  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  N
) } ) )
365 disjdif 4040 . . . . . . . . . . . . . . . 16  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  i^i  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  N
) } ) )  =  (/)
366364, 365eqtri 2644 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 N ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  =  (/)
367 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  _V  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  N
) }  X.  {
1 } )  Fn 
{ ( ( 2nd `  ( 1st `  T
) ) `  N
) } )
36833, 367ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }
369 fvun1 6269 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  /\  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  /\  ( ( ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 N ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) ) `  n ) )
370368, 369mp3an2 1412 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  /\  ( ( ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) ) `  n ) )
371 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  _V  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  N
) }  X.  {
0 } )  Fn 
{ ( ( 2nd `  ( 1st `  T
) ) `  N
) } )
37236, 371ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }
373 fvun1 6269 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  /\  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  /\  ( ( ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 N ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) ) `  n ) )
374372, 373mp3an2 1412 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  /\  ( ( ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) ) `  n ) )
375370, 374eqtr4d 2659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  /\  ( ( ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  i^i  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  =  (/)  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) ) )  -> 
( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 0 } ) ) `  n ) )
376366, 375mpanr1 719 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 0 } ) ) `  n ) )
377363, 376sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 0 } ) ) `  n ) )
378323, 377sylan2br 493 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  (
n  e.  ( 1 ... N )  /\  -.  n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ) )  ->  ( (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 1 } ) ) `  n )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) `  n
) )
379378anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 0 } ) ) `  n ) )
380 imaundi 5545 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  { 1 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  u.  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " { 1 } ) )
381 imaco 5640 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( 1  +  1 ) ... ( y  +  1 ) ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
382 imaco 5640 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " { 1 } )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " { 1 } ) )
383381, 382uneq12i 3765 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( 1  +  1 ) ... ( y  +  1 ) ) )  u.  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" { 1 } ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )  u.  ( ( 2nd `  ( 1st `  T ) ) "
( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" { 1 } ) ) )
384380, 383eqtri 2644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  { 1 } ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )  u.  ( ( 2nd `  ( 1st `  T ) ) "
( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" { 1 } ) ) )
385 fzpred 12389 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( y  +  1 ) )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
38666, 385syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
1 ... ( y  +  1 ) )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
387 uncom 3757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { 1 }  u.  (
( 1  +  1 ) ... ( y  +  1 ) ) )  =  ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  { 1 } )
388386, 387syl6eq 2672 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
1 ... ( y  +  1 ) )  =  ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u.  {
1 } ) )
389388imaeq2d 5466 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u. 
{ 1 } ) ) )
390389adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( 1  +  1 ) ... ( y  +  1 ) )  u. 
{ 1 } ) ) )
391 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  ZZ )
392124a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ZZ  ->  (
( 1  +  1 )  -  1 )  =  1 )
393 zcn 11382 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ZZ  ->  y  e.  CC )
394 pncan1 10454 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  CC  ->  (
( y  +  1 )  -  1 )  =  y )
395393, 394syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ZZ  ->  (
( y  +  1 )  -  1 )  =  y )
396392, 395oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ZZ  ->  (
( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  =  ( 1 ... y ) )
397 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  ->  j  e.  ZZ )
398397zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  ->  j  e.  CC )
399 pncan1 10454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( j  e.  CC  ->  (
( j  +  1 )  -  1 )  =  j )
400398, 399syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  ->  (
( j  +  1 )  -  1 )  =  j )
401400eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  ->  (
( ( j  +  1 )  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) )  <->  j  e.  ( ( ( 1  +  1 )  - 
1 ) ... (
( y  +  1 )  -  1 ) ) ) )
402401ibir 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  ->  (
( j  +  1 )  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) ) )
403402adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) ) )  ->  ( ( j  +  1 )  - 
1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) ) )
404 peano2z 11418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  ZZ  ->  (
y  +  1 )  e.  ZZ )
405404, 117jctil 560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ZZ  ->  (
( 1  +  1 )  e.  ZZ  /\  ( y  +  1 )  e.  ZZ ) )
406397peano2zd 11485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  ->  (
j  +  1 )  e.  ZZ )
407406, 115jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  ->  (
( j  +  1 )  e.  ZZ  /\  1  e.  ZZ )
)
408 fzsubel 12377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( 1  +  1 )  e.  ZZ  /\  ( y  +  1 )  e.  ZZ )  /\  ( ( j  +  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( j  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  <-> 
( ( j  +  1 )  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) ) ) )
409405, 407, 408syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) ) )  ->  ( ( j  +  1 )  e.  ( ( 1  +  1 ) ... (
y  +  1 ) )  <->  ( ( j  +  1 )  - 
1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) ) ) )
410403, 409mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) ) )  ->  ( j  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) )
411400eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  ->  j  =  ( ( j  +  1 )  - 
1 ) )
412411adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) ) )  ->  j  =  ( ( j  +  1 )  -  1 ) )
413 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  ( j  +  1 )  ->  (
n  -  1 )  =  ( ( j  +  1 )  - 
1 ) )
414413eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  ( j  +  1 )  ->  (
j  =  ( n  -  1 )  <->  j  =  ( ( j  +  1 )  -  1 ) ) )
415414rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( j  +  1 )  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  /\  j  =  ( (
j  +  1 )  -  1 ) )  ->  E. n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) j  =  ( n  -  1 ) )
416410, 412, 415syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  e.  ZZ  /\  j  e.  ( (
( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) ) )  ->  E. n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) j  =  ( n  -  1 ) )
417416ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ZZ  ->  (
j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) )  ->  E. n  e.  (
( 1  +  1 ) ... ( y  +  1 ) ) j  =  ( n  -  1 ) ) )
418 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  e.  ZZ  /\  n  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) )
419 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  n  e.  ZZ )
420419, 115jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  (
n  e.  ZZ  /\  1  e.  ZZ )
)
421 fzsubel 12377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( 1  +  1 )  e.  ZZ  /\  ( y  +  1 )  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  <-> 
( n  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) ) ) )
422405, 420, 421syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  e.  ZZ  /\  n  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  ( n  e.  ( ( 1  +  1 ) ... (
y  +  1 ) )  <->  ( n  - 
1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) ) ) )
423418, 422mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  e.  ZZ  /\  n  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  ( n  - 
1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) ) )
424 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  =  ( n  - 
1 )  ->  (
j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) )  <->  ( n  -  1 )  e.  ( ( ( 1  +  1 )  - 
1 ) ... (
( y  +  1 )  -  1 ) ) ) )
425423, 424syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  e.  ZZ  /\  n  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )  ->  ( j  =  ( n  -  1 )  ->  j  e.  ( ( ( 1  +  1 )  - 
1 ) ... (
( y  +  1 )  -  1 ) ) ) )
426425rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ZZ  ->  ( E. n  e.  (
( 1  +  1 ) ... ( y  +  1 ) ) j  =  ( n  -  1 )  -> 
j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) ) ) )
427417, 426impbid 202 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ZZ  ->  (
j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) )  <->  E. n  e.  ( ( 1  +  1 ) ... (
y  +  1 ) ) j  =  ( n  -  1 ) ) )
428 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  j  e. 
_V
429 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  |->  ( n  -  1 ) )  =  ( n  e.  ( ( 1  +  1 ) ... (
y  +  1 ) )  |->  ( n  - 
1 ) )
430429elrnmpt 5372 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  _V  ->  (
j  e.  ran  (
n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  |->  ( n  -  1 ) )  <->  E. n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) j  =  ( n  -  1 ) ) )
431428, 430ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  e.  ran  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  |->  ( n  -  1 ) )  <->  E. n  e.  (
( 1  +  1 ) ... ( y  +  1 ) ) j  =  ( n  -  1 ) )
432427, 431syl6bbr 278 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ZZ  ->  (
j  e.  ( ( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  - 
1 ) )  <->  j  e.  ran  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) ) 
|->  ( n  -  1 ) ) ) )
433432eqrdv 2620 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ZZ  ->  (
( ( 1  +  1 )  -  1 ) ... ( ( y  +  1 )  -  1 ) )  =  ran  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  |->  ( n  -  1 ) ) )
434396, 433eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ZZ  ->  (
1 ... y )  =  ran  ( n  e.  ( ( 1  +  1 ) ... (
y  +  1 ) )  |->  ( n  - 
1 ) ) )
435391, 434syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
1 ... y )  =  ran  ( n  e.  ( ( 1  +  1 ) ... (
y  +  1 ) )  |->  ( n  - 
1 ) ) )
436435adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... y )  =  ran  ( n  e.  ( ( 1  +  1 ) ... (
y  +  1 ) )  |->  ( n  - 
1 ) ) )
437 df-ima 5127 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " (
( 1  +  1 ) ... ( y  +  1 ) ) )  =  ran  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  |`  ( ( 1  +  1 ) ... (
y  +  1 ) ) )
438 uzid 11702 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 1  e.  ZZ  ->  1  e.  ( ZZ>= `  1 )
)
439 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 1  e.  ( ZZ>= `  1
)  ->  ( 1  +  1 )  e.  ( ZZ>= `  1 )
)
440115, 438, 439mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 1  +  1 )  e.  ( ZZ>= `  1 )
441 fzss1 12380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 1  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
1  +  1 ) ... ( y  +  1 ) )  C_  ( 1 ... (
y  +  1 ) ) )
442440, 441ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 1  +  1 ) ... ( y  +  1 ) )  C_  ( 1 ... (
y  +  1 ) )
443442, 275syl5ss 3614 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1  +  1 ) ... ( y  +  1 ) ) 
C_  ( 1 ... N ) )
444443resmptd 5452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  |`  ( ( 1  +  1 ) ... (
y  +  1 ) ) )  =  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) )
445 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( 1  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  (
1  +  1 )  <_  1 )
446171, 445mto 188 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  -.  1  e.  ( ( 1  +  1 ) ... (
y  +  1 ) )
447 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  1  ->  (
n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  <->  1  e.  ( ( 1  +  1 ) ... (
y  +  1 ) ) ) )
448446, 447mtbiri 317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  1  ->  -.  n  e.  ( (
1  +  1 ) ... ( y  +  1 ) ) )
449448necon2ai 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  n  =/=  1 )
450449, 182syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  ( n  - 
1 ) )
451450mpteq2ia 4740 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  =  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  |->  ( n  -  1 ) )
452444, 451syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  |`  ( ( 1  +  1 ) ... (
y  +  1 ) ) )  =  ( n  e.  ( ( 1  +  1 ) ... ( y  +  1 ) )  |->  ( n  -  1 ) ) )
453452rneqd 5353 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ran  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )  |`  ( ( 1  +  1 ) ... (
y  +  1 ) ) )  =  ran  ( n  e.  (
( 1  +  1 ) ... ( y  +  1 ) ) 
|->  ( n  -  1 ) ) )
454437, 453syl5eq 2668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) )  =  ran  ( n  e.  (
( 1  +  1 ) ... ( y  +  1 ) ) 
|->  ( n  -  1 ) ) )
455436, 454eqtr4d 2659 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... y )  =  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" ( ( 1  +  1 ) ... ( y  +  1 ) ) ) )
456455imaeq2d 5466 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " ( ( 1  +  1 ) ... ( y  +  1 ) ) ) ) )
457269sneqd 4189 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) `  1 ) }  =  { N } )
458 fnsnfv 6258 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  Fn  ( 1 ... N
)  /\  1  e.  ( 1 ... N
) )  ->  { ( ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) ` 
1 ) }  =  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" { 1 } ) )
459272, 268, 458syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) `  1 ) }  =  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " {
1 } ) )
460457, 459eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  { N }  =  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" { 1 } ) )
461460imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" { N }
)  =  ( ( 2nd `  ( 1st `  T ) ) "
( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )
" { 1 } ) ) )
462355, 461eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  { ( ( 2nd `  ( 1st `  T
) ) `  N
) }  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " { 1 } ) ) )
463462adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  =  ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) " { 1 } ) ) )
464456, 463uneq12d 3768 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  N
) } )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( ( 1  +  1 ) ... (
y  +  1 ) ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " { 1 } ) ) ) )
465384, 390, 4643eqtr4a 2682 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  u.  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) )
466465xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  u.  {
( ( 2nd `  ( 1st `  T ) ) `
 N ) } )  X.  { 1 } ) )
467 xpundir 5172 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  N
) } )  X. 
{ 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) )
468466, 467syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 1 } ) ) )
469 imaco 5640 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) ) )
470 df-ima 5127 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  =  ran  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  |`  ( ( ( y  +  1 )  +  1 ) ... N
) )
471 fzss1 12380 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
( y  +  1 )  +  1 ) ... N )  C_  ( 1 ... N
) )
472232, 471syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( y  +  1 )  +  1 ) ... N ) 
C_  ( 1 ... N ) )
473472resmptd 5452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  |`  ( ( ( y  +  1 )  +  1 ) ... N
) )  =  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) )
474 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  1  e.  RR )
47564nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  ZZ )
476475peano2zd 11485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  ZZ )
477476zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  RR )
47864nnge1d 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  1  <_  ( y  +  1 ) )
479474, 219, 477, 478, 220lelttrd 10195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  1  <  ( ( y  +  1 )  +  1 ) )
480474, 477ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
1  <  ( (
y  +  1 )  +  1 )  <->  -.  (
( y  +  1 )  +  1 )  <_  1 ) )
481479, 480mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  -.  ( ( y  +  1 )  +  1 )  <_  1 )
482 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( 1  e.  ( ( ( y  +  1 )  +  1 ) ... N )  ->  (
( y  +  1 )  +  1 )  <_  1 )
483481, 482nsyl 135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  -.  1  e.  ( (
( y  +  1 )  +  1 ) ... N ) )
484 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  1  ->  (
n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  <->  1  e.  ( ( ( y  +  1 )  +  1 ) ... N
) ) )
485484notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  1  ->  ( -.  n  e.  (
( ( y  +  1 )  +  1 ) ... N )  <->  -.  1  e.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
486483, 485syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
n  =  1  ->  -.  n  e.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
487486necon2ad 2809 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  ->  n  =/=  1 ) )
488487imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  ( 0 ... ( N  - 
1 ) )  /\  n  e.  ( (
( y  +  1 )  +  1 ) ... N ) )  ->  n  =/=  1
)
489488, 182syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  ( 0 ... ( N  - 
1 ) )  /\  n  e.  ( (
( y  +  1 )  +  1 ) ... N ) )  ->  if ( n  =  1 ,  N ,  ( n  - 
1 ) )  =  ( n  -  1 ) )
490489mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  =  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  ( n  -  1 ) ) )
491490adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  =  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  ( n  -  1 ) ) )
492473, 491eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )  |`  ( ( ( y  +  1 )  +  1 ) ... N
) )  =  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  ( n  -  1 ) ) )
493492rneqd 5353 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ran  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )  |`  ( ( ( y  +  1 )  +  1 ) ... N
) )  =  ran  ( n  e.  (
( ( y  +  1 )  +  1 ) ... N ) 
|->  ( n  -  1 ) ) )
494470, 493syl5eq 2668 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  =  ran  ( n  e.  (
( ( y  +  1 )  +  1 ) ... N ) 
|->  ( n  -  1 ) ) )
495 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  ( n  -  1 ) )  =  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N
)  |->  ( n  - 
1 ) )
496495elrnmpt 5372 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  _V  ->  (
j  e.  ran  (
n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  ( n  -  1 ) )  <->  E. n  e.  ( ( ( y  +  1 )  +  1 ) ... N ) j  =  ( n  -  1 ) ) )
497428, 496ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  ran  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  ( n  -  1 ) )  <->  E. n  e.  (
( ( y  +  1 )  +  1 ) ... N ) j  =  ( n  -  1 ) )
498 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( ( y  +  1 )  +  1 ) ... N
) )  ->  n  e.  ( ( ( y  +  1 )  +  1 ) ... N
) )
499114, 476anim12ci 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( y  +  1 )  +  1 )  e.  ZZ  /\  N  e.  ZZ )
)
500 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  ->  n  e.  ZZ )
501500, 115jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  ->  (
n  e.  ZZ  /\  1  e.  ZZ )
)
502 fzsubel 12377 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( y  +  1 )  +  1 )  e.  ZZ  /\  N  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  <-> 
( n  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  - 
1 ) ) ) )
503499, 501, 502syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( ( y  +  1 )  +  1 ) ... N
) )  ->  (
n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  <->  ( n  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
504498, 503mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( ( y  +  1 )  +  1 ) ... N
) )  ->  (
n  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) ) )
505 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  =  ( n  - 
1 )  ->  (
j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  - 
1 ) )  <->  ( n  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
506504, 505syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( ( ( y  +  1 )  +  1 ) ... N
) )  ->  (
j  =  ( n  -  1 )  -> 
j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  - 
1 ) ) ) )
507506rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( E. n  e.  (
( ( y  +  1 )  +  1 ) ... N ) j  =  ( n  -  1 )  -> 
j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  - 
1 ) ) ) )
508 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  ->  j  e.  ZZ )
509508zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  ->  j  e.  CC )
510509, 399syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  ->  (
( j  +  1 )  -  1 )  =  j )
511510eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  ->  (
( ( j  +  1 )  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  - 
1 ) )  <->  j  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
512511ibir 257 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  ->  (
( j  +  1 )  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) ) )
513512adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) )  ->  (
( j  +  1 )  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) ) )
514508peano2zd 11485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  ->  (
j  +  1 )  e.  ZZ )
515514, 115jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  ->  (
( j  +  1 )  e.  ZZ  /\  1  e.  ZZ )
)
516 fzsubel 12377 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( y  +  1 )  +  1 )  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( j  +  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( j  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... N )  <-> 
( ( j  +  1 )  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  - 
1 ) ) ) )
517499, 515, 516syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) )  ->  (
( j  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... N )  <->  ( (
j  +  1 )  -  1 )  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
518513, 517mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) )  ->  (
j  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... N ) )
519510eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  ->  j  =  ( ( j  +  1 )  - 
1 ) )
520519adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) )  ->  j  =  ( ( j  +  1 )  - 
1 ) )
521414rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( j  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... N )  /\  j  =  ( (
j  +  1 )  -  1 ) )  ->  E. n  e.  ( ( ( y  +  1 )  +  1 ) ... N ) j  =  ( n  -  1 ) )
522518, 520, 521syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) )  ->  E. n  e.  ( ( ( y  +  1 )  +  1 ) ... N
) j  =  ( n  -  1 ) )
523522ex 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  - 
1 ) )  ->  E. n  e.  (
( ( y  +  1 )  +  1 ) ... N ) j  =  ( n  -  1 ) ) )
524507, 523impbid 202 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( E. n  e.  (
( ( y  +  1 )  +  1 ) ... N ) j  =  ( n  -  1 )  <->  j  e.  ( ( ( ( y  +  1 )  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
525497, 524syl5bb 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  e.  ran  (
n  e.  ( ( ( y  +  1 )  +  1 ) ... N )  |->  ( n  -  1 ) )  <->  j  e.  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) ) ) )
526525eqrdv 2620 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ran  ( n  e.  (
( ( y  +  1 )  +  1 ) ... N ) 
|->  ( n  -  1 ) )  =  ( ( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) ) )
52764nncnd 11036 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  CC )
528 pncan1 10454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  +  1 )  e.  CC  ->  (
( ( y  +  1 )  +  1 )  -  1 )  =  ( y  +  1 ) )
529527, 528syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( y  +  1 )  +  1 )  -  1 )  =  ( y  +  1 ) )
530529oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  =  ( ( y  +  1 ) ... ( N  -  1 ) ) )
531530adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( y  +  1 )  +  1 )  -  1 ) ... ( N  -  1 ) )  =  ( ( y  +  1 ) ... ( N  -  1 ) ) )
532494, 526, 5313eqtrd 2660 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  =  ( ( y  +  1 ) ... ( N  -  1 ) ) )
533532imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) ) )
534469, 533syl5eq 2668 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) ) )
535534xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )
536468, 535uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 1 } ) )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) ) )
537 un23 3772 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 1 } ) )
538536, 537syl6eq 2672 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 1 } ) ) )
539538fveq1d 6193 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 1 } ) ) `  n ) )
540539ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  X.  { 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `  N ) }  X.  { 1 } ) ) `  n ) )
541 imaundi 5545 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 ) ... ( N  -  1 ) )  u.  { N } ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) ) " { N } ) )
542 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( y  +  1 ) )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( (
y  +  1 ) ... N )  =  ( ( ( y  +  1 ) ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
543234, 202, 542syl2anr 495 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... N )  =  ( ( ( y  +  1 ) ... ( N  - 
1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N
) ) )
544208uneq2d 3767 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( y  +  1 ) ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( ( y  +  1 ) ... ( N  -  1 ) )  u.  { N }
) )
545544adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( y  +  1 ) ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) )  =  ( ( ( y  +  1 ) ... ( N  - 
1 ) )  u. 
{ N } ) )
546543, 545eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... N )  =  ( ( ( y  +  1 ) ... ( N  - 
1 ) )  u. 
{ N } ) )
547546imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 ) ... ( N  - 
1 ) )  u. 
{ N } ) ) )
548355adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  =  ( ( 2nd `  ( 1st `  T
) ) " { N } ) )
549548uneq2d 3767 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  N
) } )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) ) " { N } ) ) )
550541, 547, 5493eqtr4a 2682 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... ( N  -  1 ) ) )  u.  { ( ( 2nd `  ( 1st `  T ) ) `
 N ) } ) )
551550xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  N
) } )  X. 
{ 0 } ) )
552 xpundir 5172 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  N
) } )  X. 
{ 0 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) )
553551, 552syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) )
554553uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) ) )
555 unass 3770 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) )
556554, 555syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... ( N  -  1 ) ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) )
557556fveq1d 6193 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) `  n
) )
558557ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... ( N  -  1 ) ) )  X.  {
0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 N ) }  X.  { 0 } ) ) `  n
) )
559379, 540, 5583eqtr4d 2666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) )
560319, 559eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( 0 ... ( N  - 
1 ) ) )  /\  n  e.  ( 1 ... N ) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  0 )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
561252, 254, 317, 560ifbothda 4123 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
562561oveq2d 6666 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 ) ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  n ) ) )
563250, 562eqtr2d 2657 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )  =  ( ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
564563mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) ) )
56593, 564eqtrd 2656 . . . 4  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n ) ) ) )
56652adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  e.  RR )
567160adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  RR )
568158adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  RR )
569 elfzle2 12345 . . . . . . . . . 10  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  <_  ( N  -  1 ) )
570569adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <_  ( N  -  1 ) )
571159adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  -  1 )  <  N )
572566, 567, 568, 570, 571lelttrd 10195 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <  N )
573 poimirlem21.4 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  T
)  =  N )
574573adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  =  N )
575572, 574breqtrrd 4681 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <  ( 2nd `  T
) )
576575iftrued 4094 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  y )
577576csbeq1d 3540 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ y  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
578 vex 3203 . . . . . 6  |-  y  e. 
_V
579 oveq2 6658 . . . . . . . . . 10  |-  ( j  =  y  ->  (
1 ... j )  =  ( 1 ... y
) )
580579imaeq2d 5466 . . . . . . . . 9  |-  ( j  =  y  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) ) )
581580xpeq1d 5138 . . . . . . . 8  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } ) )
582 oveq1 6657 . . . . . . . . . . 11  |-  ( j  =  y  ->  (
j  +  1 )  =  ( y  +  1 ) )
583582oveq1d 6665 . . . . . . . . . 10  |-  ( j  =  y  ->  (
( j  +  1 ) ... N )  =  ( ( y  +  1 ) ... N ) )
584583imaeq2d 5466 . . . . . . . . 9  |-  ( j  =  y  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
585584xpeq1d 5138 . . . . . . . 8  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) )
586581, 585uneq12d 3768 . . . . . . 7  |-  ( j  =  y  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) )
587586oveq2d 6666 . . . . . 6  |-  ( j  =  y  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
588578, 587csbie 3559 . . . . 5  |-  [_ y  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
589577, 588syl6eq 2672 . . . 4  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
590 ovexd 6680 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) )  e.  _V )
591 fvexd 6203 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
)  e.  _V )
592 eqidd 2623 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) )
593 ffn 6045 . . . . . . 7  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) : ( 1 ... N ) --> ( { 1 }  u.  { 0 } )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( 1 ... N ) )
594247, 593syl 17 . . . . . 6  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  (
1 ... N ) )
595 nfcv 2764 . . . . . . . . . . 11  |-  F/_ n
( 2nd `  ( 1st `  T ) )
596 nfmpt1 4747 . . . . . . . . . . 11  |-  F/_ n
( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) )
597595, 596nfco 5287 . . . . . . . . . 10  |-  F/_ n
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) )
598 nfcv 2764 . . . . . . . . . 10  |-  F/_ n
( 1 ... (
y  +  1 ) )
599597, 598nfima 5474 . . . . . . . . 9  |-  F/_ n
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )
600 nfcv 2764 . . . . . . . . 9  |-  F/_ n { 1 }
601599, 600nfxp 5142 . . . . . . . 8  |-  F/_ n
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )
602 nfcv 2764 . . . . . . . . . 10  |-  F/_ n
( ( ( y  +  1 )  +  1 ) ... N
)
603597, 602nfima 5474 . . . . . . . . 9  |-  F/_ n
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )
604 nfcv 2764 . . . . . . . . 9  |-  F/_ n { 0 }
605603, 604nfxp 5142 . . . . . . . 8  |-  F/_ n
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )
606601, 605nfun 3769 . . . . . . 7  |-  F/_ n
( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )
607606dffn5f 6252 . . . . . 6  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  (
1 ... N )  <->  ( (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
608594, 607sylib 208 . . . . 5  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) )
60989, 590, 591, 592, 608offval2 6914 . . . 4  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) )  =  ( n  e.  ( 1 ... N ) 
|->  ( ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) )  +  ( ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  n
) ) ) )
610565, 589, 6093eqtr4rd 2667 . . 3  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) )  = 
[_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
611610mpteq2dva 4744 . 2  |-  ( ph  ->  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
61222, 611eqtr4d 2659 1  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem20  33429
  Copyright terms: Public domain W3C validator