MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval2 Structured version   Visualization version   Unicode version

Theorem imval2 13891
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
imval2  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )

Proof of Theorem imval2
StepHypRef Expression
1 imcl 13851 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
21recnd 10068 . . 3  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
3 2mulicn 11255 . . . 4  |-  ( 2  x.  _i )  e.  CC
4 2muline0 11256 . . . 4  |-  ( 2  x.  _i )  =/=  0
5 divcan4 10712 . . . 4  |-  ( ( ( Im `  A
)  e.  CC  /\  ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )  -> 
( ( ( Im
`  A )  x.  ( 2  x.  _i ) )  /  (
2  x.  _i ) )  =  ( Im
`  A ) )
63, 4, 5mp3an23 1416 . . 3  |-  ( ( Im `  A )  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
72, 6syl 17 . 2  |-  ( A  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
8 recl 13850 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
98recnd 10068 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
10 ax-icn 9995 . . . . . . 7  |-  _i  e.  CC
11 mulcl 10020 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
1210, 2, 11sylancr 695 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
139, 12addcld 10059 . . . . 5  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  e.  CC )
1413, 9, 12subsubd 10420 . . . 4  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  -  (
Re `  A )
)  +  ( _i  x.  ( Im `  A ) ) ) )
15 replim 13856 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
16 remim 13857 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
1715, 16oveq12d 6668 . . . 4  |-  ( A  e.  CC  ->  ( A  -  ( * `  A ) )  =  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )
18122timesd 11275 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
19 mulcom 10022 . . . . . . . 8  |-  ( ( ( Im `  A
)  e.  CC  /\  ( 2  x.  _i )  e.  CC )  ->  ( ( Im `  A )  x.  (
2  x.  _i ) )  =  ( ( 2  x.  _i )  x.  ( Im `  A ) ) )
203, 19mpan2 707 . . . . . . 7  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( ( 2  x.  _i )  x.  ( Im `  A
) ) )
21 2cn 11091 . . . . . . . 8  |-  2  e.  CC
22 mulass 10024 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( 2  x.  _i )  x.  ( Im `  A ) )  =  ( 2  x.  (
_i  x.  ( Im `  A ) ) ) )
2321, 10, 22mp3an12 1414 . . . . . . 7  |-  ( ( Im `  A )  e.  CC  ->  (
( 2  x.  _i )  x.  ( Im `  A ) )  =  ( 2  x.  (
_i  x.  ( Im `  A ) ) ) )
2420, 23eqtrd 2656 . . . . . 6  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( 2  x.  ( _i  x.  (
Im `  A )
) ) )
252, 24syl 17 . . . . 5  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( 2  x.  ( _i  x.  (
Im `  A )
) ) )
269, 12pncan2d 10394 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( Re
`  A ) )  =  ( _i  x.  ( Im `  A ) ) )
2726oveq1d 6665 . . . . 5  |-  ( A  e.  CC  ->  (
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
Re `  A )
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
2818, 25, 273eqtr4d 2666 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  -  ( Re `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
2914, 17, 283eqtr4rd 2667 . . 3  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( A  -  ( * `  A
) ) )
3029oveq1d 6665 . 2  |-  ( A  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )
317, 30eqtr3d 2658 1  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   2c2 11070   *ccj 13836   Recre 13837   Imcim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  resinval  14865  dvmptim  23733
  Copyright terms: Public domain W3C validator