MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf0 Structured version   Visualization version   Unicode version

Theorem inf0 8518
Description: Our Axiom of Infinity derived from existence of omega. The proof shows that the especially contrived class " ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) " exists, is a subset of its union, and contains a given set  x (and thus is nonempty). Thus, it provides an example demonstrating that a set  y exists with the necessary properties demanded by ax-inf 8535. (Contributed by NM, 15-Oct-1996.)
Hypothesis
Ref Expression
inf0.1  |-  om  e.  _V
Assertion
Ref Expression
inf0  |-  E. y
( x  e.  y  /\  A. z ( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) ) )
Distinct variable group:    x, y, z, w

Proof of Theorem inf0
Dummy variables  v 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4  |-  x  e. 
_V
2 fr0g 7531 . . . 4  |-  ( x  e.  _V  ->  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  (/) )  =  x )
31, 2ax-mp 5 . . 3  |-  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  (/) )  =  x
4 frfnom 7530 . . . 4  |-  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  Fn  om
5 peano1 7085 . . . 4  |-  (/)  e.  om
6 fnfvelrn 6356 . . . 4  |-  ( ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )  Fn 
om  /\  (/)  e.  om )  ->  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  (/) )  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) )
74, 5, 6mp2an 708 . . 3  |-  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  (/) )  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )
83, 7eqeltrri 2698 . 2  |-  x  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )
9 fvelrnb 6243 . . . . 5  |-  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om )  Fn  om  ->  ( z  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om )  <->  E. f  e.  om  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  f )  =  z ) )
104, 9ax-mp 5 . . . 4  |-  ( z  e.  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  <->  E. f  e.  om  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  =  z )
11 fvex 6201 . . . . . . . . . 10  |-  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  f
)  e.  _V
1211sucid 5804 . . . . . . . . 9  |-  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  f
)  e.  suc  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )
1311sucex 7011 . . . . . . . . . 10  |-  suc  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  e.  _V
14 eqid 2622 . . . . . . . . . . 11  |-  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  =  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )
15 suceq 5790 . . . . . . . . . . 11  |-  ( z  =  v  ->  suc  z  =  suc  v )
16 suceq 5790 . . . . . . . . . . 11  |-  ( z  =  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  f )  ->  suc  z  =  suc  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  f
) )
1714, 15, 16frsucmpt2 7535 . . . . . . . . . 10  |-  ( ( f  e.  om  /\  suc  ( ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  e.  _V )  ->  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  suc  f )  =  suc  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  f ) )
1813, 17mpan2 707 . . . . . . . . 9  |-  ( f  e.  om  ->  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  =  suc  ( ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f ) )
1912, 18syl5eleqr 2708 . . . . . . . 8  |-  ( f  e.  om  ->  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  e.  ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f ) )
20 eleq1 2689 . . . . . . . 8  |-  ( ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  =  z  ->  ( ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  f
)  e.  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  suc  f )  <->  z  e.  ( ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f ) ) )
2119, 20syl5ib 234 . . . . . . 7  |-  ( ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  =  z  ->  ( f  e. 
om  ->  z  e.  ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f ) ) )
22 peano2b 7081 . . . . . . . . 9  |-  ( f  e.  om  <->  suc  f  e. 
om )
23 fnfvelrn 6356 . . . . . . . . . 10  |-  ( ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )  Fn 
om  /\  suc  f  e. 
om )  ->  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) )
244, 23mpan 706 . . . . . . . . 9  |-  ( suc  f  e.  om  ->  ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) )
2522, 24sylbi 207 . . . . . . . 8  |-  ( f  e.  om  ->  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) )
2625a1i 11 . . . . . . 7  |-  ( ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  =  z  ->  ( f  e. 
om  ->  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  suc  f )  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) )
2721, 26jcad 555 . . . . . 6  |-  ( ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  =  z  ->  ( f  e. 
om  ->  ( z  e.  ( ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  /\  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) ) ) )
28 fvex 6201 . . . . . . 7  |-  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  suc  f )  e.  _V
29 eleq2 2690 . . . . . . . 8  |-  ( w  =  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  suc  f )  -> 
( z  e.  w  <->  z  e.  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  suc  f ) ) )
30 eleq1 2689 . . . . . . . 8  |-  ( w  =  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  suc  f )  -> 
( w  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om )  <->  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  suc  f )  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) )
3129, 30anbi12d 747 . . . . . . 7  |-  ( w  =  ( ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om ) `  suc  f )  -> 
( ( z  e.  w  /\  w  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) )  <-> 
( z  e.  ( ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  /\  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) ) ) )
3228, 31spcev 3300 . . . . . 6  |-  ( ( z  e.  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) `  suc  f )  /\  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  suc  f )  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) )  ->  E. w ( z  e.  w  /\  w  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) )
3327, 32syl6com 37 . . . . 5  |-  ( f  e.  om  ->  (
( ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  =  z  ->  E. w ( z  e.  w  /\  w  e.  ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) ) )
3433rexlimiv 3027 . . . 4  |-  ( E. f  e.  om  (
( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) `  f )  =  z  ->  E. w ( z  e.  w  /\  w  e.  ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) )
3510, 34sylbi 207 . . 3  |-  ( z  e.  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  E. w ( z  e.  w  /\  w  e.  ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) )
3635ax-gen 1722 . 2  |-  A. z
( z  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om )  ->  E. w
( z  e.  w  /\  w  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) ) )
37 fndm 5990 . . . . . 6  |-  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om )  Fn  om  ->  dom  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )  =  om )
384, 37ax-mp 5 . . . . 5  |-  dom  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  =  om
39 inf0.1 . . . . 5  |-  om  e.  _V
4038, 39eqeltri 2697 . . . 4  |-  dom  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  e.  _V
41 fnfun 5988 . . . . 5  |-  ( ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om )  Fn  om  ->  Fun  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) )
424, 41ax-mp 5 . . . 4  |-  Fun  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )
43 funrnex 7133 . . . 4  |-  ( dom  ( rec ( ( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )  e. 
_V  ->  ( Fun  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )  e. 
_V ) )
4440, 42, 43mp2 9 . . 3  |-  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  e.  _V
45 eleq2 2690 . . . 4  |-  ( y  =  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ( x  e.  y  <-> 
x  e.  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )
) )
46 eleq2 2690 . . . . . 6  |-  ( y  =  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ( z  e.  y  <-> 
z  e.  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )
) )
47 eleq2 2690 . . . . . . . 8  |-  ( y  =  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ( w  e.  y  <-> 
w  e.  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )
) )
4847anbi2d 740 . . . . . . 7  |-  ( y  =  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ( ( z  e.  w  /\  w  e.  y )  <->  ( z  e.  w  /\  w  e.  ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) ) )
4948exbidv 1850 . . . . . 6  |-  ( y  =  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ( E. w ( z  e.  w  /\  w  e.  y )  <->  E. w ( z  e.  w  /\  w  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) ) )
5046, 49imbi12d 334 . . . . 5  |-  ( y  =  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ( ( z  e.  y  ->  E. w
( z  e.  w  /\  w  e.  y
) )  <->  ( z  e.  ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )  ->  E. w ( z  e.  w  /\  w  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) ) ) )
5150albidv 1849 . . . 4  |-  ( y  =  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ( A. z ( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) )  <->  A. z
( z  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om )  ->  E. w
( z  e.  w  /\  w  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om ) ) ) ) )
5245, 51anbi12d 747 . . 3  |-  ( y  =  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  ( ( x  e.  y  /\  A. z
( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) ) )  <-> 
( x  e.  ran  ( rec ( ( v  e.  _V  |->  suc  v
) ,  x )  |`  om )  /\  A. z ( z  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om )  ->  E. w ( z  e.  w  /\  w  e. 
ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) ) ) ) )
5344, 52spcev 3300 . 2  |-  ( ( x  e.  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  /\  A. z ( z  e.  ran  ( rec ( ( v  e. 
_V  |->  suc  v ) ,  x )  |`  om )  ->  E. w ( z  e.  w  /\  w  e.  ran  ( rec (
( v  e.  _V  |->  suc  v ) ,  x
)  |`  om ) ) ) )  ->  E. y
( x  e.  y  /\  A. z ( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) ) ) )
548, 36, 53mp2an 708 1  |-  E. y
( x  e.  y  /\  A. z ( z  e.  y  ->  E. w ( z  e.  w  /\  w  e.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  axinf  8541
  Copyright terms: Public domain W3C validator