MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpss Structured version   Visualization version   Unicode version

Theorem infpss 9039
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 9135. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infpss  |-  ( om  ~<_  A  ->  E. x
( x  C.  A  /\  x  ~~  A ) )
Distinct variable group:    x, A

Proof of Theorem infpss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 infn0 8222 . . 3  |-  ( om  ~<_  A  ->  A  =/=  (/) )
2 n0 3931 . . 3  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
31, 2sylib 208 . 2  |-  ( om  ~<_  A  ->  E. y 
y  e.  A )
4 reldom 7961 . . . . . 6  |-  Rel  ~<_
54brrelex2i 5159 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  _V )
6 difexg 4808 . . . . 5  |-  ( A  e.  _V  ->  ( A  \  { y } )  e.  _V )
75, 6syl 17 . . . 4  |-  ( om  ~<_  A  ->  ( A  \  { y } )  e.  _V )
87adantr 481 . . 3  |-  ( ( om  ~<_  A  /\  y  e.  A )  ->  ( A  \  { y } )  e.  _V )
9 simpr 477 . . . . 5  |-  ( ( om  ~<_  A  /\  y  e.  A )  ->  y  e.  A )
10 difsnpss 4338 . . . . 5  |-  ( y  e.  A  <->  ( A  \  { y } ) 
C.  A )
119, 10sylib 208 . . . 4  |-  ( ( om  ~<_  A  /\  y  e.  A )  ->  ( A  \  { y } )  C.  A )
12 infdifsn 8554 . . . . 5  |-  ( om  ~<_  A  ->  ( A  \  { y } ) 
~~  A )
1312adantr 481 . . . 4  |-  ( ( om  ~<_  A  /\  y  e.  A )  ->  ( A  \  { y } )  ~~  A )
1411, 13jca 554 . . 3  |-  ( ( om  ~<_  A  /\  y  e.  A )  ->  (
( A  \  {
y } )  C.  A  /\  ( A  \  { y } ) 
~~  A ) )
15 psseq1 3694 . . . . 5  |-  ( x  =  ( A  \  { y } )  ->  ( x  C.  A 
<->  ( A  \  {
y } )  C.  A ) )
16 breq1 4656 . . . . 5  |-  ( x  =  ( A  \  { y } )  ->  ( x  ~~  A 
<->  ( A  \  {
y } )  ~~  A ) )
1715, 16anbi12d 747 . . . 4  |-  ( x  =  ( A  \  { y } )  ->  ( ( x 
C.  A  /\  x  ~~  A )  <->  ( ( A  \  { y } )  C.  A  /\  ( A  \  { y } )  ~~  A
) ) )
1817spcegv 3294 . . 3  |-  ( ( A  \  { y } )  e.  _V  ->  ( ( ( A 
\  { y } )  C.  A  /\  ( A  \  { y } )  ~~  A
)  ->  E. x
( x  C.  A  /\  x  ~~  A ) ) )
198, 14, 18sylc 65 . 2  |-  ( ( om  ~<_  A  /\  y  e.  A )  ->  E. x
( x  C.  A  /\  x  ~~  A ) )
203, 19exlimddv 1863 1  |-  ( om  ~<_  A  ->  E. x
( x  C.  A  /\  x  ~~  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C. wpss 3575   (/)c0 3915   {csn 4177   class class class wbr 4653   omcom 7065    ~~ cen 7952    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  isfin4-2  9136
  Copyright terms: Public domain W3C validator