MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intrnfi Structured version   Visualization version   Unicode version

Theorem intrnfi 8322
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
intrnfi  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| ran  F  e.  ( fi `  B ) )

Proof of Theorem intrnfi
StepHypRef Expression
1 simpr1 1067 . . . 4  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  F : A --> B )
2 frn 6053 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2syl 17 . . 3  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  ran  F  C_  B )
4 fdm 6051 . . . . . 6  |-  ( F : A --> B  ->  dom  F  =  A )
51, 4syl 17 . . . . 5  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  dom  F  =  A )
6 simpr2 1068 . . . . 5  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  =/=  (/) )
75, 6eqnetrd 2861 . . . 4  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  dom  F  =/=  (/) )
8 dm0rn0 5342 . . . . 5  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
98necon3bii 2846 . . . 4  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
107, 9sylib 208 . . 3  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  ran  F  =/=  (/) )
11 simpr3 1069 . . . 4  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  Fin )
12 ffn 6045 . . . . . 6  |-  ( F : A --> B  ->  F  Fn  A )
131, 12syl 17 . . . . 5  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  F  Fn  A )
14 dffn4 6121 . . . . 5  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
1513, 14sylib 208 . . . 4  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  F : A -onto-> ran  F
)
16 fofi 8252 . . . 4  |-  ( ( A  e.  Fin  /\  F : A -onto-> ran  F
)  ->  ran  F  e. 
Fin )
1711, 15, 16syl2anc 693 . . 3  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  ran  F  e.  Fin )
183, 10, 173jca 1242 . 2  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  -> 
( ran  F  C_  B  /\  ran  F  =/=  (/)  /\  ran  F  e.  Fin ) )
19 elfir 8321 . 2  |-  ( ( B  e.  V  /\  ( ran  F  C_  B  /\  ran  F  =/=  (/)  /\  ran  F  e.  Fin ) )  ->  |^| ran  F  e.  ( fi `  B
) )
2018, 19syldan 487 1  |-  ( ( B  e.  V  /\  ( F : A --> B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| ran  F  e.  ( fi `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   |^|cint 4475   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888   Fincfn 7955   ficfi 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317
This theorem is referenced by:  iinfi  8323  firest  16093
  Copyright terms: Public domain W3C validator