MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2ndc Structured version   Visualization version   Unicode version

Theorem tx2ndc 21454
Description: The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx2ndc  |-  ( ( R  e.  2ndc  /\  S  e.  2ndc )  ->  ( R  tX  S )  e. 
2ndc )

Proof of Theorem tx2ndc
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 21249 . 2  |-  ( R  e.  2ndc  <->  E. r  e.  TopBases  ( r  ~<_  om  /\  ( topGen `
 r )  =  R ) )
2 is2ndc 21249 . 2  |-  ( S  e.  2ndc  <->  E. s  e.  TopBases  ( s  ~<_  om  /\  ( topGen `
 s )  =  S ) )
3 reeanv 3107 . . 3  |-  ( E. r  e.  TopBases  E. s  e. 
TopBases  ( ( r  ~<_  om 
/\  ( topGen `  r
)  =  R )  /\  ( s  ~<_  om 
/\  ( topGen `  s
)  =  S ) )  <->  ( E. r  e. 
TopBases  ( r  ~<_  om  /\  ( topGen `  r )  =  R )  /\  E. s  e.  TopBases  ( s  ~<_  om  /\  ( topGen `  s
)  =  S ) ) )
4 an4 865 . . . . 5  |-  ( ( ( r  ~<_  om  /\  ( topGen `  r )  =  R )  /\  (
s  ~<_  om  /\  ( topGen `
 s )  =  S ) )  <->  ( (
r  ~<_  om  /\  s  ~<_  om )  /\  (
( topGen `  r )  =  R  /\  ( topGen `
 s )  =  S ) ) )
5 txbasval 21409 . . . . . . . . . 10  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( ( topGen `
 r )  tX  ( topGen `  s )
)  =  ( r 
tX  s ) )
6 eqid 2622 . . . . . . . . . . 11  |-  ran  (
x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  =  ran  (
x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )
76txval 21367 . . . . . . . . . 10  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( r  tX  s )  =  (
topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) ) )
85, 7eqtrd 2656 . . . . . . . . 9  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( ( topGen `
 r )  tX  ( topGen `  s )
)  =  ( topGen ` 
ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) ) )
98adantr 481 . . . . . . . 8  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
( topGen `  r )  tX  ( topGen `  s )
)  =  ( topGen ` 
ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) ) )
106txbas 21370 . . . . . . . . . 10  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  e.  TopBases )
1110adantr 481 . . . . . . . . 9  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) )  e.  TopBases )
12 omelon 8543 . . . . . . . . . . . 12  |-  om  e.  On
13 vex 3203 . . . . . . . . . . . . . . . 16  |-  s  e. 
_V
1413xpdom1 8059 . . . . . . . . . . . . . . 15  |-  ( r  ~<_  om  ->  ( r  X.  s )  ~<_  ( om 
X.  s ) )
15 omex 8540 . . . . . . . . . . . . . . . 16  |-  om  e.  _V
1615xpdom2 8055 . . . . . . . . . . . . . . 15  |-  ( s  ~<_  om  ->  ( om  X.  s )  ~<_  ( om 
X.  om ) )
17 domtr 8009 . . . . . . . . . . . . . . 15  |-  ( ( ( r  X.  s
)  ~<_  ( om  X.  s )  /\  ( om  X.  s )  ~<_  ( om  X.  om )
)  ->  ( r  X.  s )  ~<_  ( om 
X.  om ) )
1814, 16, 17syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( r  ~<_  om  /\  s  ~<_  om )  ->  ( r  X.  s )  ~<_  ( om  X.  om )
)
1918adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
r  X.  s )  ~<_  ( om  X.  om ) )
20 xpomen 8838 . . . . . . . . . . . . 13  |-  ( om 
X.  om )  ~~  om
21 domentr 8015 . . . . . . . . . . . . 13  |-  ( ( ( r  X.  s
)  ~<_  ( om  X.  om )  /\  ( om  X.  om )  ~~  om )  ->  ( r  X.  s )  ~<_  om )
2219, 20, 21sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
r  X.  s )  ~<_  om )
23 ondomen 8860 . . . . . . . . . . . 12  |-  ( ( om  e.  On  /\  ( r  X.  s
)  ~<_  om )  ->  (
r  X.  s )  e.  dom  card )
2412, 22, 23sylancr 695 . . . . . . . . . . 11  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
r  X.  s )  e.  dom  card )
25 eqid 2622 . . . . . . . . . . . . . 14  |-  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  =  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )
26 vex 3203 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
27 vex 3203 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
2826, 27xpex 6962 . . . . . . . . . . . . . 14  |-  ( x  X.  y )  e. 
_V
2925, 28fnmpt2i 7239 . . . . . . . . . . . . 13  |-  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  Fn  ( r  X.  s )
3029a1i 11 . . . . . . . . . . . 12  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  Fn  ( r  X.  s ) )
31 dffn4 6121 . . . . . . . . . . . 12  |-  ( ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  Fn  ( r  X.  s )  <->  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) : ( r  X.  s
) -onto-> ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) )
3230, 31sylib 208 . . . . . . . . . . 11  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) : ( r  X.  s ) -onto-> ran  ( x  e.  r ,  y  e.  s 
|->  ( x  X.  y
) ) )
33 fodomnum 8880 . . . . . . . . . . 11  |-  ( ( r  X.  s )  e.  dom  card  ->  ( ( x  e.  r ,  y  e.  s 
|->  ( x  X.  y
) ) : ( r  X.  s )
-onto->
ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  ->  ran  ( x  e.  r ,  y  e.  s 
|->  ( x  X.  y
) )  ~<_  ( r  X.  s ) ) )
3424, 32, 33sylc 65 . . . . . . . . . 10  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) )  ~<_  ( r  X.  s ) )
35 domtr 8009 . . . . . . . . . 10  |-  ( ( ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  ~<_  ( r  X.  s )  /\  ( r  X.  s )  ~<_  om )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  ~<_  om )
3634, 22, 35syl2anc 693 . . . . . . . . 9  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) )  ~<_  om )
37 2ndci 21251 . . . . . . . . 9  |-  ( ( ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  e.  TopBases 
/\  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  ~<_  om )  ->  ( topGen ` 
ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) )  e.  2ndc )
3811, 36, 37syl2anc 693 . . . . . . . 8  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  ( topGen `
 ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) )  e.  2ndc )
399, 38eqeltrd 2701 . . . . . . 7  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
( topGen `  r )  tX  ( topGen `  s )
)  e.  2ndc )
40 oveq12 6659 . . . . . . . 8  |-  ( ( ( topGen `  r )  =  R  /\  ( topGen `
 s )  =  S )  ->  (
( topGen `  r )  tX  ( topGen `  s )
)  =  ( R 
tX  S ) )
4140eleq1d 2686 . . . . . . 7  |-  ( ( ( topGen `  r )  =  R  /\  ( topGen `
 s )  =  S )  ->  (
( ( topGen `  r
)  tX  ( topGen `  s ) )  e. 
2ndc 
<->  ( R  tX  S
)  e.  2ndc )
)
4239, 41syl5ibcom 235 . . . . . 6  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
( ( topGen `  r
)  =  R  /\  ( topGen `  s )  =  S )  ->  ( R  tX  S )  e. 
2ndc ) )
4342expimpd 629 . . . . 5  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( (
( r  ~<_  om  /\  s  ~<_  om )  /\  (
( topGen `  r )  =  R  /\  ( topGen `
 s )  =  S ) )  -> 
( R  tX  S
)  e.  2ndc )
)
444, 43syl5bi 232 . . . 4  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( (
( r  ~<_  om  /\  ( topGen `  r )  =  R )  /\  (
s  ~<_  om  /\  ( topGen `
 s )  =  S ) )  -> 
( R  tX  S
)  e.  2ndc )
)
4544rexlimivv 3036 . . 3  |-  ( E. r  e.  TopBases  E. s  e. 
TopBases  ( ( r  ~<_  om 
/\  ( topGen `  r
)  =  R )  /\  ( s  ~<_  om 
/\  ( topGen `  s
)  =  S ) )  ->  ( R  tX  S )  e.  2ndc )
463, 45sylbir 225 . 2  |-  ( ( E. r  e.  TopBases  ( r  ~<_  om  /\  ( topGen `
 r )  =  R )  /\  E. s  e.  TopBases  ( s  ~<_  om  /\  ( topGen `  s
)  =  S ) )  ->  ( R  tX  S )  e.  2ndc )
471, 2, 46syl2anb 496 1  |-  ( ( R  e.  2ndc  /\  S  e.  2ndc )  ->  ( R  tX  S )  e. 
2ndc )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115   Oncon0 5723    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   topGenctg 16098   TopBasesctb 20749   2ndcc2ndc 21241    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-topgen 16104  df-bases 20750  df-2ndc 21243  df-tx 21365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator