MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcctbss Structured version   Visualization version   Unicode version

Theorem 2ndcctbss 21258
Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
2ndcctbss.1  |-  X  = 
U. B
2ndcctbss.2  |-  J  =  ( topGen `  B )
2ndcctbss.3  |-  S  =  { <. u ,  v
>.  |  ( u  e.  c  /\  v  e.  c  /\  E. w  e.  B  ( u  C_  w  /\  w  C_  v ) ) }
Assertion
Ref Expression
2ndcctbss  |-  ( ( B  e.  TopBases  /\  J  e.  2ndc )  ->  E. b  e. 
TopBases  ( b  ~<_  om  /\  b  C_  B  /\  J  =  ( topGen `  b
) ) )
Distinct variable groups:    b, c, u, v, w, B    J, b, c
Allowed substitution hints:    S( w, v, u, b, c)    J( w, v, u)    X( w, v, u, b, c)

Proof of Theorem 2ndcctbss
Dummy variables  d 
f  m  n  o  t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( B  e.  TopBases  /\  J  e.  2ndc )  ->  J  e.  2ndc )
2 is2ndc 21249 . . 3  |-  ( J  e.  2ndc  <->  E. c  e.  TopBases  ( c  ~<_  om  /\  ( topGen `
 c )  =  J ) )
31, 2sylib 208 . 2  |-  ( ( B  e.  TopBases  /\  J  e.  2ndc )  ->  E. c  e. 
TopBases  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) )
4 vex 3203 . . . . . . 7  |-  c  e. 
_V
54, 4xpex 6962 . . . . . 6  |-  ( c  X.  c )  e. 
_V
6 3simpa 1058 . . . . . . . 8  |-  ( ( u  e.  c  /\  v  e.  c  /\  E. w  e.  B  ( u  C_  w  /\  w  C_  v ) )  ->  ( u  e.  c  /\  v  e.  c ) )
76ssopab2i 5003 . . . . . . 7  |-  { <. u ,  v >.  |  ( u  e.  c  /\  v  e.  c  /\  E. w  e.  B  ( u  C_  w  /\  w  C_  v ) ) }  C_  { <. u ,  v >.  |  ( u  e.  c  /\  v  e.  c ) }
8 2ndcctbss.3 . . . . . . 7  |-  S  =  { <. u ,  v
>.  |  ( u  e.  c  /\  v  e.  c  /\  E. w  e.  B  ( u  C_  w  /\  w  C_  v ) ) }
9 df-xp 5120 . . . . . . 7  |-  ( c  X.  c )  =  { <. u ,  v
>.  |  ( u  e.  c  /\  v  e.  c ) }
107, 8, 93sstr4i 3644 . . . . . 6  |-  S  C_  ( c  X.  c
)
11 ssdomg 8001 . . . . . 6  |-  ( ( c  X.  c )  e.  _V  ->  ( S  C_  ( c  X.  c )  ->  S  ~<_  ( c  X.  c
) ) )
125, 10, 11mp2 9 . . . . 5  |-  S  ~<_  ( c  X.  c )
134xpdom1 8059 . . . . . . . . 9  |-  ( c  ~<_  om  ->  ( c  X.  c )  ~<_  ( om 
X.  c ) )
14 omex 8540 . . . . . . . . . 10  |-  om  e.  _V
1514xpdom2 8055 . . . . . . . . 9  |-  ( c  ~<_  om  ->  ( om  X.  c )  ~<_  ( om 
X.  om ) )
16 domtr 8009 . . . . . . . . 9  |-  ( ( ( c  X.  c
)  ~<_  ( om  X.  c )  /\  ( om  X.  c )  ~<_  ( om  X.  om )
)  ->  ( c  X.  c )  ~<_  ( om 
X.  om ) )
1713, 15, 16syl2anc 693 . . . . . . . 8  |-  ( c  ~<_  om  ->  ( c  X.  c )  ~<_  ( om 
X.  om ) )
18 xpomen 8838 . . . . . . . 8  |-  ( om 
X.  om )  ~~  om
19 domentr 8015 . . . . . . . 8  |-  ( ( ( c  X.  c
)  ~<_  ( om  X.  om )  /\  ( om  X.  om )  ~~  om )  ->  ( c  X.  c )  ~<_  om )
2017, 18, 19sylancl 694 . . . . . . 7  |-  ( c  ~<_  om  ->  ( c  X.  c )  ~<_  om )
2120adantr 481 . . . . . 6  |-  ( ( c  ~<_  om  /\  ( topGen `
 c )  =  J )  ->  (
c  X.  c )  ~<_  om )
2221ad2antll 765 . . . . 5  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  ( c  X.  c )  ~<_  om )
23 domtr 8009 . . . . 5  |-  ( ( S  ~<_  ( c  X.  c )  /\  (
c  X.  c )  ~<_  om )  ->  S  ~<_  om )
2412, 22, 23sylancr 695 . . . 4  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  S  ~<_  om )
258relopabi 5245 . . . . . . . . 9  |-  Rel  S
26 simpr 477 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  x  e.  S )  ->  x  e.  S )
27 1st2nd 7214 . . . . . . . . 9  |-  ( ( Rel  S  /\  x  e.  S )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
2825, 26, 27sylancr 695 . . . . . . . 8  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  x  e.  S )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
2928, 26eqeltrrd 2702 . . . . . . 7  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  x  e.  S )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  S )
30 df-br 4654 . . . . . . . . 9  |-  ( ( 1st `  x ) S ( 2nd `  x
)  <->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  S
)
31 fvex 6201 . . . . . . . . . 10  |-  ( 1st `  x )  e.  _V
32 fvex 6201 . . . . . . . . . 10  |-  ( 2nd `  x )  e.  _V
33 simpl 473 . . . . . . . . . . . 12  |-  ( ( u  =  ( 1st `  x )  /\  v  =  ( 2nd `  x
) )  ->  u  =  ( 1st `  x
) )
3433eleq1d 2686 . . . . . . . . . . 11  |-  ( ( u  =  ( 1st `  x )  /\  v  =  ( 2nd `  x
) )  ->  (
u  e.  c  <->  ( 1st `  x )  e.  c ) )
35 simpr 477 . . . . . . . . . . . 12  |-  ( ( u  =  ( 1st `  x )  /\  v  =  ( 2nd `  x
) )  ->  v  =  ( 2nd `  x
) )
3635eleq1d 2686 . . . . . . . . . . 11  |-  ( ( u  =  ( 1st `  x )  /\  v  =  ( 2nd `  x
) )  ->  (
v  e.  c  <->  ( 2nd `  x )  e.  c ) )
37 sseq1 3626 . . . . . . . . . . . . 13  |-  ( u  =  ( 1st `  x
)  ->  ( u  C_  w  <->  ( 1st `  x
)  C_  w )
)
38 sseq2 3627 . . . . . . . . . . . . 13  |-  ( v  =  ( 2nd `  x
)  ->  ( w  C_  v  <->  w  C_  ( 2nd `  x ) ) )
3937, 38bi2anan9 917 . . . . . . . . . . . 12  |-  ( ( u  =  ( 1st `  x )  /\  v  =  ( 2nd `  x
) )  ->  (
( u  C_  w  /\  w  C_  v )  <-> 
( ( 1st `  x
)  C_  w  /\  w  C_  ( 2nd `  x
) ) ) )
4039rexbidv 3052 . . . . . . . . . . 11  |-  ( ( u  =  ( 1st `  x )  /\  v  =  ( 2nd `  x
) )  ->  ( E. w  e.  B  ( u  C_  w  /\  w  C_  v )  <->  E. w  e.  B  ( ( 1st `  x )  C_  w  /\  w  C_  ( 2nd `  x ) ) ) )
4134, 36, 403anbi123d 1399 . . . . . . . . . 10  |-  ( ( u  =  ( 1st `  x )  /\  v  =  ( 2nd `  x
) )  ->  (
( u  e.  c  /\  v  e.  c  /\  E. w  e.  B  ( u  C_  w  /\  w  C_  v
) )  <->  ( ( 1st `  x )  e.  c  /\  ( 2nd `  x )  e.  c  /\  E. w  e.  B  ( ( 1st `  x )  C_  w  /\  w  C_  ( 2nd `  x ) ) ) ) )
4231, 32, 41, 8braba 4992 . . . . . . . . 9  |-  ( ( 1st `  x ) S ( 2nd `  x
)  <->  ( ( 1st `  x )  e.  c  /\  ( 2nd `  x
)  e.  c  /\  E. w  e.  B  ( ( 1st `  x
)  C_  w  /\  w  C_  ( 2nd `  x
) ) ) )
4330, 42bitr3i 266 . . . . . . . 8  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  S  <->  ( ( 1st `  x
)  e.  c  /\  ( 2nd `  x )  e.  c  /\  E. w  e.  B  (
( 1st `  x
)  C_  w  /\  w  C_  ( 2nd `  x
) ) ) )
4443simp3bi 1078 . . . . . . 7  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  S  ->  E. w  e.  B  ( ( 1st `  x
)  C_  w  /\  w  C_  ( 2nd `  x
) ) )
4529, 44syl 17 . . . . . 6  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  x  e.  S )  ->  E. w  e.  B  ( ( 1st `  x )  C_  w  /\  w  C_  ( 2nd `  x ) ) )
46 fvi 6255 . . . . . . . 8  |-  ( B  e.  TopBases  ->  (  _I  `  B )  =  B )
4746ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  x  e.  S )  ->  (  _I  `  B )  =  B )
4847rexeqdv 3145 . . . . . 6  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  x  e.  S )  ->  ( E. w  e.  (  _I  `  B ) ( ( 1st `  x
)  C_  w  /\  w  C_  ( 2nd `  x
) )  <->  E. w  e.  B  ( ( 1st `  x )  C_  w  /\  w  C_  ( 2nd `  x ) ) ) )
4945, 48mpbird 247 . . . . 5  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  x  e.  S )  ->  E. w  e.  (  _I  `  B
) ( ( 1st `  x )  C_  w  /\  w  C_  ( 2nd `  x ) ) )
5049ralrimiva 2966 . . . 4  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  A. x  e.  S  E. w  e.  (  _I  `  B ) ( ( 1st `  x
)  C_  w  /\  w  C_  ( 2nd `  x
) ) )
51 fvex 6201 . . . . 5  |-  (  _I 
`  B )  e. 
_V
52 sseq2 3627 . . . . . 6  |-  ( w  =  ( f `  x )  ->  (
( 1st `  x
)  C_  w  <->  ( 1st `  x )  C_  (
f `  x )
) )
53 sseq1 3626 . . . . . 6  |-  ( w  =  ( f `  x )  ->  (
w  C_  ( 2nd `  x )  <->  ( f `  x )  C_  ( 2nd `  x ) ) )
5452, 53anbi12d 747 . . . . 5  |-  ( w  =  ( f `  x )  ->  (
( ( 1st `  x
)  C_  w  /\  w  C_  ( 2nd `  x
) )  <->  ( ( 1st `  x )  C_  ( f `  x
)  /\  ( f `  x )  C_  ( 2nd `  x ) ) ) )
5551, 54axcc4dom 9263 . . . 4  |-  ( ( S  ~<_  om  /\  A. x  e.  S  E. w  e.  (  _I  `  B
) ( ( 1st `  x )  C_  w  /\  w  C_  ( 2nd `  x ) ) )  ->  E. f ( f : S --> (  _I 
`  B )  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )
5624, 50, 55syl2anc 693 . . 3  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  E. f ( f : S --> (  _I 
`  B )  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )
5746ad2antrr 762 . . . . . . 7  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  (  _I  `  B )  =  B )
5857feq3d 6032 . . . . . 6  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  ( f : S --> (  _I  `  B )  <->  f : S
--> B ) )
5958anbi1d 741 . . . . 5  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  ( ( f : S --> (  _I 
`  B )  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  <->  ( f : S --> B  /\  A. x  e.  S  (
( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) ) )
60 2ndctop 21250 . . . . . . . . . . . 12  |-  ( J  e.  2ndc  ->  J  e. 
Top )
6160adantl 482 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  J  e.  2ndc )  ->  J  e.  Top )
6261ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  J  e.  Top )
63 frn 6053 . . . . . . . . . . . 12  |-  ( f : S --> B  ->  ran  f  C_  B )
6463ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  ran  f  C_  B )
65 bastg 20770 . . . . . . . . . . . . 13  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
6665ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  B  C_  ( topGen `
 B ) )
67 2ndcctbss.2 . . . . . . . . . . . 12  |-  J  =  ( topGen `  B )
6866, 67syl6sseqr 3652 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  B  C_  J
)
6964, 68sstrd 3613 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  ran  f  C_  J )
70 simprrl 804 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  ->  o  e.  J
)
71 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) )  -> 
( topGen `  c )  =  J )
7271ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  ->  ( topGen `  c
)  =  J )
7370, 72eleqtrrd 2704 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  ->  o  e.  (
topGen `  c ) )
74 simprrr 805 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  ->  t  e.  o )
75 tg2 20769 . . . . . . . . . . . . . 14  |-  ( ( o  e.  ( topGen `  c )  /\  t  e.  o )  ->  E. d  e.  c  ( t  e.  d  /\  d  C_  o ) )
7673, 74, 75syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  ->  E. d  e.  c  ( t  e.  d  /\  d  C_  o
) )
77 bastg 20770 . . . . . . . . . . . . . . . . . . 19  |-  ( c  e.  TopBases  ->  c  C_  ( topGen `
 c ) )
7877ad2antrl 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  c  C_  ( topGen `
 c ) )
7978ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  c  C_  ( topGen `
 c ) )
8067eqeq2i 2634 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
topGen `  c )  =  J  <->  ( topGen `  c
)  =  ( topGen `  B ) )
8180biimpi 206 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
topGen `  c )  =  J  ->  ( topGen `  c )  =  (
topGen `  B ) )
8281adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  ~<_  om  /\  ( topGen `
 c )  =  J )  ->  ( topGen `
 c )  =  ( topGen `  B )
)
8382ad2antll 765 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  ( topGen `  c
)  =  ( topGen `  B ) )
8483ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  ( topGen `  c
)  =  ( topGen `  B ) )
8579, 84sseqtrd 3641 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  c  C_  ( topGen `
 B ) )
86 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  d  e.  c )
8785, 86sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  d  e.  (
topGen `  B ) )
88 simprrl 804 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  t  e.  d )
89 tg2 20769 . . . . . . . . . . . . . . 15  |-  ( ( d  e.  ( topGen `  B )  /\  t  e.  d )  ->  E. m  e.  B  ( t  e.  m  /\  m  C_  d ) )
9087, 88, 89syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  E. m  e.  B  ( t  e.  m  /\  m  C_  d ) )
9165ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  ->  B  C_  ( topGen `
 B ) )
9291ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  B  C_  ( topGen `
 B ) )
9372ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  ( topGen `  c
)  =  J )
9493, 67syl6req 2673 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  ( topGen `  B
)  =  ( topGen `  c ) )
9592, 94sseqtrd 3641 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  B  C_  ( topGen `
 c ) )
96 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  m  e.  B
)
9795, 96sseldd 3604 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  m  e.  (
topGen `  c ) )
98 simprrl 804 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  t  e.  m
)
99 tg2 20769 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( topGen `  c )  /\  t  e.  m )  ->  E. n  e.  c  ( t  e.  n  /\  n  C_  m ) )
10097, 98, 99syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  E. n  e.  c  ( t  e.  n  /\  n  C_  m ) )
101 ffn 6045 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : S --> B  -> 
f  Fn  S )
102101ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) )  -> 
f  Fn  S )
103102ad2antlr 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  f  Fn  S
)
104103ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  f  Fn  S
)
105 simprl 794 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  n  e.  c )
10686ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  d  e.  c )
107 simplrl 800 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  m  e.  B
)
108 simprrr 805 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  n  C_  m
)
109 simprr 796 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) )  ->  m  C_  d
)
110109ad2antlr 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  m  C_  d
)
111 sseq2 3627 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  m  ->  (
n  C_  w  <->  n  C_  m
) )
112 sseq1 3626 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  m  ->  (
w  C_  d  <->  m  C_  d
) )
113111, 112anbi12d 747 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  m  ->  (
( n  C_  w  /\  w  C_  d )  <-> 
( n  C_  m  /\  m  C_  d ) ) )
114113rspcev 3309 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  B  /\  ( n  C_  m  /\  m  C_  d ) )  ->  E. w  e.  B  ( n  C_  w  /\  w  C_  d ) )
115107, 108, 110, 114syl12anc 1324 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  E. w  e.  B  ( n  C_  w  /\  w  C_  d ) )
116 df-br 4654 . . . . . . . . . . . . . . . . . . 19  |-  ( n S d  <->  <. n ,  d >.  e.  S
)
117 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  n  e. 
_V
118 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  d  e. 
_V
119 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( u  =  n  /\  v  =  d )  ->  u  =  n )
120119eleq1d 2686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  =  n  /\  v  =  d )  ->  ( u  e.  c  <-> 
n  e.  c ) )
121 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( u  =  n  /\  v  =  d )  ->  v  =  d )
122121eleq1d 2686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  =  n  /\  v  =  d )  ->  ( v  e.  c  <-> 
d  e.  c ) )
123 sseq1 3626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( u  =  n  ->  (
u  C_  w  <->  n  C_  w
) )
124 sseq2 3627 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  d  ->  (
w  C_  v  <->  w  C_  d
) )
125123, 124bi2anan9 917 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( u  =  n  /\  v  =  d )  ->  ( ( u  C_  w  /\  w  C_  v
)  <->  ( n  C_  w  /\  w  C_  d
) ) )
126125rexbidv 3052 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  =  n  /\  v  =  d )  ->  ( E. w  e.  B  ( u  C_  w  /\  w  C_  v
)  <->  E. w  e.  B  ( n  C_  w  /\  w  C_  d ) ) )
127120, 122, 1263anbi123d 1399 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( u  =  n  /\  v  =  d )  ->  ( ( u  e.  c  /\  v  e.  c  /\  E. w  e.  B  ( u  C_  w  /\  w  C_  v ) )  <->  ( n  e.  c  /\  d  e.  c  /\  E. w  e.  B  ( n  C_  w  /\  w  C_  d ) ) ) )
128117, 118, 127, 8braba 4992 . . . . . . . . . . . . . . . . . . 19  |-  ( n S d  <->  ( n  e.  c  /\  d  e.  c  /\  E. w  e.  B  ( n  C_  w  /\  w  C_  d ) ) )
129116, 128bitr3i 266 . . . . . . . . . . . . . . . . . 18  |-  ( <.
n ,  d >.  e.  S  <->  ( n  e.  c  /\  d  e.  c  /\  E. w  e.  B  ( n  C_  w  /\  w  C_  d ) ) )
130105, 106, 115, 129syl3anbrc 1246 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  <. n ,  d
>.  e.  S )
131 fnfvelrn 6356 . . . . . . . . . . . . . . . . 17  |-  ( ( f  Fn  S  /\  <.
n ,  d >.  e.  S )  ->  (
f `  <. n ,  d >. )  e.  ran  f )
132104, 130, 131syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  ( f `  <. n ,  d >.
)  e.  ran  f
)
133 simprl 794 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  n  e.  c )
134 simplll 798 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  d  e.  c )
135 simplrl 800 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  m  e.  B )
136 simprrr 805 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  n  C_  m )
137109ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  m  C_  d )
138135, 136, 137, 114syl12anc 1324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  E. w  e.  B  ( n  C_  w  /\  w  C_  d ) )
139133, 134, 138, 129syl3anbrc 1246 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  <. n ,  d >.  e.  S
)
140 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  <. n ,  d
>.  ->  ( 1st `  x
)  =  ( 1st `  <. n ,  d
>. ) )
141 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  <. n ,  d
>.  ->  ( f `  x )  =  ( f `  <. n ,  d >. )
)
142140, 141sseq12d 3634 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  <. n ,  d
>.  ->  ( ( 1st `  x )  C_  (
f `  x )  <->  ( 1st `  <. n ,  d >. )  C_  ( f `  <. n ,  d >. )
) )
143 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  <. n ,  d
>.  ->  ( 2nd `  x
)  =  ( 2nd `  <. n ,  d
>. ) )
144141, 143sseq12d 3634 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  <. n ,  d
>.  ->  ( ( f `
 x )  C_  ( 2nd `  x )  <-> 
( f `  <. n ,  d >. )  C_  ( 2nd `  <. n ,  d >. )
) )
145142, 144anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  <. n ,  d
>.  ->  ( ( ( 1st `  x ) 
C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) )  <->  ( ( 1st `  <. n ,  d
>. )  C_  ( f `
 <. n ,  d
>. )  /\  (
f `  <. n ,  d >. )  C_  ( 2nd `  <. n ,  d
>. ) ) ) )
146145rspcv 3305 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
n ,  d >.  e.  S  ->  ( A. x  e.  S  (
( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) )  ->  (
( 1st `  <. n ,  d >. )  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  ( 2nd `  <. n ,  d >. )
) ) )
147139, 146syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  ( A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) )  ->  (
( 1st `  <. n ,  d >. )  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  ( 2nd `  <. n ,  d >. )
) ) )
148117, 118op1st 7176 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1st `  <. n ,  d
>. )  =  n
149148sseq1i 3629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1st `  <. n ,  d >. )  C_  ( f `  <. n ,  d >. )  <->  n 
C_  ( f `  <. n ,  d >.
) )
150117, 118op2nd 7177 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2nd `  <. n ,  d
>. )  =  d
151150sseq2i 3630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f `  <. n ,  d >. )  C_  ( 2nd `  <. n ,  d >. )  <->  ( f `  <. n ,  d >. )  C_  d )
152149, 151anbi12i 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1st `  <. n ,  d >. )  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  ( 2nd `  <. n ,  d >. )
)  <->  ( n  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  d ) )
153 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  /\  ( n  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  d ) )  ->  n  C_  ( f `  <. n ,  d >.
) )
154 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) )  ->  t  e.  n )
155154ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  /\  ( n  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  d ) )  -> 
t  e.  n )
156153, 155sseldd 3604 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  /\  ( n  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  d ) )  -> 
t  e.  ( f `
 <. n ,  d
>. ) )
157 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  /\  ( n  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  d ) )  -> 
( f `  <. n ,  d >. )  C_  d )
158 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  d  C_  o )
159158ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  /\  ( n  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  d ) )  -> 
d  C_  o )
160157, 159sstrd 3613 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  /\  ( n  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  d ) )  -> 
( f `  <. n ,  d >. )  C_  o )
161156, 160jca 554 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  /\  ( n  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  d ) )  -> 
( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) )
162161ex 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  (
( n  C_  (
f `  <. n ,  d >. )  /\  (
f `  <. n ,  d >. )  C_  d
)  ->  ( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) ) )
163152, 162syl5bi 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  (
n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  (
( ( 1st `  <. n ,  d >. )  C_  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  ( 2nd `  <. n ,  d >. )
)  ->  ( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) ) )
164147, 163syldc 48 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. x  e.  S  (
( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) )  ->  (
( ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  ( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) ) )
165164exp4c 636 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  S  (
( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) )  ->  (
( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  -> 
( ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) )  -> 
( ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) )  -> 
( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) ) ) ) )
166165ad2antlr 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) )  -> 
( ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) )  -> 
( ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) )  -> 
( ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) )  -> 
( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) ) ) ) )
167166adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  ->  ( ( d  e.  c  /\  (
t  e.  d  /\  d  C_  o ) )  ->  ( ( m  e.  B  /\  (
t  e.  m  /\  m  C_  d ) )  ->  ( ( n  e.  c  /\  (
t  e.  n  /\  n  C_  m ) )  ->  ( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) ) ) ) )
168167imp41 619 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  ( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) )
169 eleq2 2690 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( f `  <. n ,  d >.
)  ->  ( t  e.  b  <->  t  e.  ( f `  <. n ,  d >. )
) )
170 sseq1 3626 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( f `  <. n ,  d >.
)  ->  ( b  C_  o  <->  ( f `  <. n ,  d >.
)  C_  o )
)
171169, 170anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( f `  <. n ,  d >.
)  ->  ( (
t  e.  b  /\  b  C_  o )  <->  ( t  e.  ( f `  <. n ,  d >. )  /\  ( f `  <. n ,  d >. )  C_  o ) ) )
172171rspcev 3309 . . . . . . . . . . . . . . . 16  |-  ( ( ( f `  <. n ,  d >. )  e.  ran  f  /\  (
t  e.  ( f `
 <. n ,  d
>. )  /\  (
f `  <. n ,  d >. )  C_  o
) )  ->  E. b  e.  ran  f ( t  e.  b  /\  b  C_  o ) )
173132, 168, 172syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  /\  ( n  e.  c  /\  ( t  e.  n  /\  n  C_  m ) ) )  ->  E. b  e.  ran  f ( t  e.  b  /\  b  C_  o ) )
174100, 173rexlimddv 3035 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  (
c  e.  TopBases  /\  (
c  ~<_  om  /\  ( topGen `
 c )  =  J ) ) )  /\  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  /\  ( o  e.  J  /\  t  e.  o
) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  /\  ( m  e.  B  /\  ( t  e.  m  /\  m  C_  d ) ) )  ->  E. b  e.  ran  f ( t  e.  b  /\  b  C_  o ) )
17590, 174rexlimddv 3035 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  /\  ( d  e.  c  /\  ( t  e.  d  /\  d  C_  o ) ) )  ->  E. b  e.  ran  f ( t  e.  b  /\  b  C_  o ) )
17676, 175rexlimddv 3035 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  /\  ( o  e.  J  /\  t  e.  o ) ) )  ->  E. b  e.  ran  f ( t  e.  b  /\  b  C_  o ) )
177176expr 643 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  ( ( o  e.  J  /\  t  e.  o )  ->  E. b  e.  ran  f ( t  e.  b  /\  b  C_  o ) ) )
178177ralrimivv 2970 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  A. o  e.  J  A. t  e.  o  E. b  e.  ran  f ( t  e.  b  /\  b  C_  o ) )
179 basgen2 20793 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ran  f  C_  J  /\  A. o  e.  J  A. t  e.  o  E. b  e.  ran  f ( t  e.  b  /\  b  C_  o ) )  ->  ( topGen `  ran  f )  =  J )
18062, 69, 178, 179syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  ( topGen `  ran  f )  =  J )
181180, 62eqeltrd 2701 . . . . . . . 8  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  ( topGen `  ran  f )  e.  Top )
182 tgclb 20774 . . . . . . . 8  |-  ( ran  f  e.  TopBases  <->  ( topGen ` 
ran  f )  e. 
Top )
183181, 182sylibr 224 . . . . . . 7  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  ran  f  e.  TopBases )
184 omelon 8543 . . . . . . . . . 10  |-  om  e.  On
18524adantr 481 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  S  ~<_  om )
186 ondomen 8860 . . . . . . . . . 10  |-  ( ( om  e.  On  /\  S  ~<_  om )  ->  S  e.  dom  card )
187184, 185, 186sylancr 695 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  S  e.  dom  card )
188101ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  f  Fn  S
)
189 dffn4 6121 . . . . . . . . . 10  |-  ( f  Fn  S  <->  f : S -onto-> ran  f )
190188, 189sylib 208 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  f : S -onto-> ran  f )
191 fodomnum 8880 . . . . . . . . 9  |-  ( S  e.  dom  card  ->  ( f : S -onto-> ran  f  ->  ran  f  ~<_  S ) )
192187, 190, 191sylc 65 . . . . . . . 8  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  ran  f  ~<_  S )
193 domtr 8009 . . . . . . . 8  |-  ( ( ran  f  ~<_  S  /\  S  ~<_  om )  ->  ran  f  ~<_  om )
194192, 185, 193syl2anc 693 . . . . . . 7  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  ran  f  ~<_  om )
195180eqcomd 2628 . . . . . . 7  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  J  =  (
topGen `  ran  f ) )
196 breq1 4656 . . . . . . . . 9  |-  ( b  =  ran  f  -> 
( b  ~<_  om  <->  ran  f  ~<_  om ) )
197 sseq1 3626 . . . . . . . . 9  |-  ( b  =  ran  f  -> 
( b  C_  B  <->  ran  f  C_  B )
)
198 fveq2 6191 . . . . . . . . . 10  |-  ( b  =  ran  f  -> 
( topGen `  b )  =  ( topGen `  ran  f ) )
199198eqeq2d 2632 . . . . . . . . 9  |-  ( b  =  ran  f  -> 
( J  =  (
topGen `  b )  <->  J  =  ( topGen `  ran  f ) ) )
200196, 197, 1993anbi123d 1399 . . . . . . . 8  |-  ( b  =  ran  f  -> 
( ( b  ~<_  om 
/\  b  C_  B  /\  J  =  ( topGen `
 b ) )  <-> 
( ran  f  ~<_  om  /\  ran  f  C_  B  /\  J  =  ( topGen ` 
ran  f ) ) ) )
201200rspcev 3309 . . . . . . 7  |-  ( ( ran  f  e.  TopBases  /\  ( ran  f  ~<_  om  /\  ran  f  C_  B  /\  J  =  ( topGen ` 
ran  f ) ) )  ->  E. b  e. 
TopBases  ( b  ~<_  om  /\  b  C_  B  /\  J  =  ( topGen `  b
) ) )
202183, 194, 64, 195, 201syl13anc 1328 . . . . . 6  |-  ( ( ( ( B  e.  TopBases 
/\  J  e.  2ndc )  /\  ( c  e.  TopBases 
/\  ( c  ~<_  om 
/\  ( topGen `  c
)  =  J ) ) )  /\  (
f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) ) )  ->  E. b  e.  TopBases  ( b  ~<_  om  /\  b  C_  B  /\  J  =  ( topGen `  b )
) )
203202ex 450 . . . . 5  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  ( ( f : S --> B  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  ->  E. b  e.  TopBases  ( b  ~<_  om  /\  b  C_  B  /\  J  =  (
topGen `  b ) ) ) )
20459, 203sylbid 230 . . . 4  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  ( ( f : S --> (  _I 
`  B )  /\  A. x  e.  S  ( ( 1st `  x
)  C_  ( f `  x )  /\  (
f `  x )  C_  ( 2nd `  x
) ) )  ->  E. b  e.  TopBases  ( b  ~<_  om  /\  b  C_  B  /\  J  =  (
topGen `  b ) ) ) )
205204exlimdv 1861 . . 3  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  ( E. f
( f : S --> (  _I  `  B )  /\  A. x  e.  S  ( ( 1st `  x )  C_  (
f `  x )  /\  ( f `  x
)  C_  ( 2nd `  x ) ) )  ->  E. b  e.  TopBases  ( b  ~<_  om  /\  b  C_  B  /\  J  =  ( topGen `  b )
) ) )
20656, 205mpd 15 . 2  |-  ( ( ( B  e.  TopBases  /\  J  e.  2ndc )  /\  ( c  e.  TopBases  /\  ( c  ~<_  om  /\  ( topGen `  c )  =  J ) ) )  ->  E. b  e.  TopBases  ( b  ~<_  om  /\  b  C_  B  /\  J  =  ( topGen `  b )
) )
2073, 206rexlimddv 3035 1  |-  ( ( B  e.  TopBases  /\  J  e.  2ndc )  ->  E. b  e. 
TopBases  ( b  ~<_  om  /\  b  C_  B  /\  J  =  ( topGen `  b
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   <.cop 4183   U.cuni 4436   class class class wbr 4653   {copab 4712    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   Rel wrel 5119   Oncon0 5723    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888   omcom 7065   1stc1st 7166   2ndc2nd 7167    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   topGenctg 16098   Topctop 20698   TopBasesctb 20749   2ndcc2ndc 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-topgen 16104  df-top 20699  df-bases 20750  df-2ndc 21243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator