MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss2 Structured version   Visualization version   Unicode version

Theorem iblss2 23572
Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblss2.1  |-  ( ph  ->  A  C_  B )
iblss2.2  |-  ( ph  ->  B  e.  dom  vol )
iblss2.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
iblss2.4  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
iblss2.5  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
Assertion
Ref Expression
iblss2  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L^1 )
Distinct variable groups:    x, A    x, B    ph, x    x, V
Allowed substitution hint:    C( x)

Proof of Theorem iblss2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iblss2.1 . . 3  |-  ( ph  ->  A  C_  B )
2 iblss2.2 . . 3  |-  ( ph  ->  B  e.  dom  vol )
3 iblss2.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
4 iblss2.4 . . 3  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
5 iblss2.5 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
6 iblmbf 23534 . . . 4  |-  ( ( x  e.  A  |->  C )  e.  L^1 
->  ( x  e.  A  |->  C )  e. MblFn )
75, 6syl 17 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
81, 2, 3, 4, 7mbfss 23413 . 2  |-  ( ph  ->  ( x  e.  B  |->  C )  e. MblFn )
91adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A  C_  B )
109sselda 3603 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  x  e.  B )
1110iftrued 4094 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
12 iftrue 4092 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
1312adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
1411, 13eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
15 ifid 4125 . . . . . . . . 9  |-  if ( x  e.  B , 
0 ,  0 )  =  0
16 simplll 798 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  ph )
17 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  x  e.  B )
18 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  -.  x  e.  A )
1917, 18eldifd 3585 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  x  e.  ( B  \  A
) )
2016, 19, 4syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  C  =  0 )
2120oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  =  ( 0  /  (
_i ^ k ) ) )
22 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  k  e.  ( 0 ... 3
) )
23 elfzelz 12342 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
24 ax-icn 9995 . . . . . . . . . . . . . . . . 17  |-  _i  e.  CC
25 ine0 10465 . . . . . . . . . . . . . . . . 17  |-  _i  =/=  0
26 expclz 12885 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
27 expne0i 12892 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
2826, 27div0d 10800 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
0  /  ( _i
^ k ) )  =  0 )
2924, 25, 28mp3an12 1414 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  (
0  /  ( _i
^ k ) )  =  0 )
3022, 23, 293syl 18 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  (
0  /  ( _i
^ k ) )  =  0 )
3121, 30eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  =  0 )
3231fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re ` 
0 ) )
33 re0 13892 . . . . . . . . . . . . 13  |-  ( Re
`  0 )  =  0
3432, 33syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  0 )
3534ifeq1d 4104 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ,  0 ) )
36 ifid 4125 . . . . . . . . . . 11  |-  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ,  0 )  =  0
3735, 36syl6eq 2672 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  0 )
3837ifeq1da 4116 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  if ( x  e.  B ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  B ,  0 ,  0 ) )
39 iffalse 4095 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
4039adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  0 )
4115, 38, 403eqtr4a 2682 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  if ( x  e.  B ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
4214, 41pm2.61dan 832 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
43 ifan 4134 . . . . . . 7  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
44 ifan 4134 . . . . . . 7  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
4542, 43, 443eqtr4g 2681 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
4645mpteq2dv 4745 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
4746fveq2d 6195 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
48 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
49 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
5048, 49, 5, 3iblitg 23535 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
5123, 50sylan2 491 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
5247, 51eqeltrd 2701 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
5352ralrimiva 2966 . 2  |-  ( ph  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
54 eqidd 2623 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
55 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
56 elun 3753 . . . . . 6  |-  ( x  e.  ( A  u.  ( B  \  A ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  A
) ) )
57 undif2 4044 . . . . . . . 8  |-  ( A  u.  ( B  \  A ) )  =  ( A  u.  B
)
58 ssequn1 3783 . . . . . . . . 9  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
591, 58sylib 208 . . . . . . . 8  |-  ( ph  ->  ( A  u.  B
)  =  B )
6057, 59syl5eq 2668 . . . . . . 7  |-  ( ph  ->  ( A  u.  ( B  \  A ) )  =  B )
6160eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A  u.  ( B 
\  A ) )  <-> 
x  e.  B ) )
6256, 61syl5bbr 274 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  \/  x  e.  ( B  \  A
) )  <->  x  e.  B ) )
6362biimpar 502 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  e.  A  \/  x  e.  ( B  \  A ) ) )
647, 3mbfmptcl 23404 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
65 0cn 10032 . . . . . 6  |-  0  e.  CC
664, 65syl6eqel 2709 . . . . 5  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  e.  CC )
6764, 66jaodan 826 . . . 4  |-  ( (
ph  /\  ( x  e.  A  \/  x  e.  ( B  \  A
) ) )  ->  C  e.  CC )
6863, 67syldan 487 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
6954, 55, 68isibl2 23533 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e.  L^1  <->  ( (
x  e.  B  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
708, 53, 69mpbir2and 957 1  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    u. cun 3572    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    <_ cle 10075    / cdiv 10684   3c3 11071   ZZcz 11377   ...cfz 12326   ^cexp 12860   Recre 13837   volcvol 23232  MblFncmbf 23383   S.2citg2 23385   L^1cibl 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-ibl 23391
This theorem is referenced by:  itgss3  23581  itgless  23583  ftc1anclem5  33489  ftc1anclem6  33490  areacirc  33505  arearect  37801  areaquad  37802
  Copyright terms: Public domain W3C validator