Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Structured version   Visualization version   Unicode version

Theorem ismrer1 33637
Description: An isometry between  RR and  RR ^ 1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
ismrer1.2  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
Assertion
Ref Expression
ismrer1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    R( x)    F( x)    V( x)

Proof of Theorem ismrer1
Dummy variables  k 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4187 . . . . . . . 8  |-  ( y  =  A  ->  { y }  =  { A } )
21xpeq1d 5138 . . . . . . 7  |-  ( y  =  A  ->  ( { y }  X.  { x } )  =  ( { A }  X.  { x }
) )
32mpteq2dv 4745 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  ( x  e.  RR  |->  ( { A }  X.  {
x } ) ) )
4 ismrer1.2 . . . . . 6  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
53, 4syl6eqr 2674 . . . . 5  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F )
6 f1oeq1 6127 . . . . 5  |-  ( ( x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F  -> 
( ( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
75, 6syl 17 . . . 4  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
81oveq2d 6666 . . . . 5  |-  ( y  =  A  ->  ( RR  ^m  { y } )  =  ( RR 
^m  { A }
) )
9 f1oeq3 6129 . . . . 5  |-  ( ( RR  ^m  { y } )  =  ( RR  ^m  { A } )  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
108, 9syl 17 . . . 4  |-  ( y  =  A  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
117, 10bitrd 268 . . 3  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
12 eqid 2622 . . . 4  |-  { y }  =  { y }
13 reex 10027 . . . 4  |-  RR  e.  _V
14 vex 3203 . . . 4  |-  y  e. 
_V
15 eqid 2622 . . . 4  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) )  =  ( x  e.  RR  |->  ( { y }  X.  { x } ) )
1612, 13, 14, 15mapsnf1o3 7906 . . 3  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )
1711, 16vtoclg 3266 . 2  |-  ( A  e.  V  ->  F : RR -1-1-onto-> ( RR  ^m  { A } ) )
18 sneq 4187 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  { x }  =  { y } )
1918xpeq2d 5139 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { y } ) )
20 snex 4908 . . . . . . . . . . . . . . . . 17  |-  { A }  e.  _V
21 snex 4908 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  _V
2220, 21xpex 6962 . . . . . . . . . . . . . . . 16  |-  ( { A }  X.  {
x } )  e. 
_V
2319, 4, 22fvmpt3i 6287 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( F `  y )  =  ( { A }  X.  { y } ) )
2423fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  (
( F `  y
) `  A )  =  ( ( { A }  X.  {
y } ) `  A ) )
2524adantr 481 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  y ) `  A
)  =  ( ( { A }  X.  { y } ) `
 A ) )
26 snidg 4206 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  A  e.  { A } )
27 fvconst2g 6467 . . . . . . . . . . . . . 14  |-  ( ( y  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2814, 26, 27sylancr 695 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2925, 28sylan9eqr 2678 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y ) `  A )  =  y )
30 sneq 4187 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  { x }  =  { z } )
3130xpeq2d 5139 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { z } ) )
3231, 4, 22fvmpt3i 6287 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR  ->  ( F `  z )  =  ( { A }  X.  { z } ) )
3332fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( z  e.  RR  ->  (
( F `  z
) `  A )  =  ( ( { A }  X.  {
z } ) `  A ) )
3433adantl 482 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  z ) `  A
)  =  ( ( { A }  X.  { z } ) `
 A ) )
35 vex 3203 . . . . . . . . . . . . . 14  |-  z  e. 
_V
36 fvconst2g 6467 . . . . . . . . . . . . . 14  |-  ( ( z  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3735, 26, 36sylancr 695 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3834, 37sylan9eqr 2678 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  z ) `  A )  =  z )
3929, 38oveq12d 6668 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) )  =  ( y  -  z
) )
4039oveq1d 6665 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( y  -  z ) ^ 2 ) )
41 resubcl 10345 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  z
)  e.  RR )
4241adantl 482 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  RR )
43 absresq 14042 . . . . . . . . . . 11  |-  ( ( y  -  z )  e.  RR  ->  (
( abs `  (
y  -  z ) ) ^ 2 )  =  ( ( y  -  z ) ^
2 ) )
4442, 43syl 17 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  =  ( ( y  -  z
) ^ 2 ) )
4540, 44eqtr4d 2659 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( abs `  (
y  -  z ) ) ^ 2 ) )
4642recnd 10068 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  CC )
4746abscld 14175 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  RR )
4847recnd 10068 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  CC )
4948sqcld 13006 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  e.  CC )
5045, 49eqeltrd 2701 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  e.  CC )
51 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  y
) `  k )  =  ( ( F `
 y ) `  A ) )
52 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  z
) `  k )  =  ( ( F `
 z ) `  A ) )
5351, 52oveq12d 6668 . . . . . . . . . 10  |-  ( k  =  A  ->  (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) )  =  ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) )
5453oveq1d 6665 . . . . . . . . 9  |-  ( k  =  A  ->  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5554sumsn 14475 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 )  e.  CC )  ->  sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 )  =  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 ) )
5650, 55syldan 487 . . . . . . 7  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5756, 45eqtrd 2656 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( abs `  ( y  -  z
) ) ^ 2 ) )
5857fveq2d 6195 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( sqr `  (
( abs `  (
y  -  z ) ) ^ 2 ) ) )
5946absge0d 14183 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  0  <_  ( abs `  ( y  -  z ) ) )
6047, 59sqrtsqd 14158 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr `  ( ( abs `  (
y  -  z ) ) ^ 2 ) )  =  ( abs `  ( y  -  z
) ) )
6158, 60eqtrd 2656 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( abs `  (
y  -  z ) ) )
62 f1of 6137 . . . . . . . 8  |-  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  ->  F : RR --> ( RR  ^m  { A } ) )
6317, 62syl 17 . . . . . . 7  |-  ( A  e.  V  ->  F : RR --> ( RR  ^m  { A } ) )
6463ffvelrnda 6359 . . . . . 6  |-  ( ( A  e.  V  /\  y  e.  RR )  ->  ( F `  y
)  e.  ( RR 
^m  { A }
) )
6563ffvelrnda 6359 . . . . . 6  |-  ( ( A  e.  V  /\  z  e.  RR )  ->  ( F `  z
)  e.  ( RR 
^m  { A }
) )
6664, 65anim12dan 882 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) ) )
67 snfi 8038 . . . . . 6  |-  { A }  e.  Fin
68 eqid 2622 . . . . . . 7  |-  ( RR 
^m  { A }
)  =  ( RR 
^m  { A }
)
6968rrnmval 33627 . . . . . 6  |-  ( ( { A }  e.  Fin  /\  ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7067, 69mp3an1 1411 . . . . 5  |-  ( ( ( F `  y
)  e.  ( RR 
^m  { A }
)  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7166, 70syl 17 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )
( Rn `  { A } ) ( F `
 z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
72 ismrer1.1 . . . . . 6  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
7372remetdval 22592 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y R z )  =  ( abs `  ( y  -  z
) ) )
7473adantl 482 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( abs `  (
y  -  z ) ) )
7561, 71, 743eqtr4rd 2667 . . 3  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) ) )
7675ralrimivva 2971 . 2  |-  ( A  e.  V  ->  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) )
7772rexmet 22594 . . 3  |-  R  e.  ( *Met `  RR )
7868rrnmet 33628 . . . 4  |-  ( { A }  e.  Fin  ->  ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) ) )
79 metxmet 22139 . . . 4  |-  ( ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) )  ->  ( Rn `  { A }
)  e.  ( *Met `  ( RR 
^m  { A }
) ) )
8067, 78, 79mp2b 10 . . 3  |-  ( Rn
`  { A }
)  e.  ( *Met `  ( RR 
^m  { A }
) )
81 isismty 33600 . . 3  |-  ( ( R  e.  ( *Met `  RR )  /\  ( Rn `  { A } )  e.  ( *Met `  ( RR  ^m  { A } ) ) )  ->  ( F  e.  ( R  Ismty  ( Rn
`  { A }
) )  <->  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) ) )
8277, 80, 81mp2an 708 . 2  |-  ( F  e.  ( R  Ismty  ( Rn `  { A } ) )  <->  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) )
8317, 76, 82sylanbrc 698 1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   {csn 4177    |-> cmpt 4729    X. cxp 5112    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   CCcc 9934   RRcr 9935    - cmin 10266   2c2 11070   ^cexp 12860   sqrcsqrt 13973   abscabs 13974   sum_csu 14416   *Metcxmt 19731   Metcme 19732    Ismty cismty 33597   Rncrrn 33624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ismty 33598  df-rrn 33625
This theorem is referenced by:  reheibor  33638
  Copyright terms: Public domain W3C validator