Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyres Structured version   Visualization version   Unicode version

Theorem ismtyres 33607
Description: A restriction of an isometry is an isometry. The condition  A  C_  X is not necessary but makes the proof easier. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyres.2  |-  B  =  ( F " A
)
ismtyres.3  |-  S  =  ( M  |`  ( A  X.  A ) )
ismtyres.4  |-  T  =  ( N  |`  ( B  X.  B ) )
Assertion
Ref Expression
ismtyres  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  -> 
( F  |`  A )  e.  ( S  Ismty  T ) )

Proof of Theorem ismtyres
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isismty 33600 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
21simprbda 653 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  F  e.  ( M  Ismty  N ) )  ->  F : X
-1-1-onto-> Y )
32adantrr 753 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  F : X -1-1-onto-> Y )
4 f1of1 6136 . . . 4  |-  ( F : X -1-1-onto-> Y  ->  F : X -1-1-> Y )
53, 4syl 17 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  F : X -1-1-> Y )
6 simprr 796 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  A  C_  X )
7 f1ores 6151 . . 3  |-  ( ( F : X -1-1-> Y  /\  A  C_  X )  ->  ( F  |`  A ) : A -1-1-onto-> ( F " A ) )
85, 6, 7syl2anc 693 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  -> 
( F  |`  A ) : A -1-1-onto-> ( F " A
) )
91biimpa 501 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  F  e.  ( M  Ismty  N ) )  ->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
109adantrr 753 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  -> 
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
11 ssel 3597 . . . . . . . . . . . . 13  |-  ( A 
C_  X  ->  (
u  e.  A  ->  u  e.  X )
)
12 ssel 3597 . . . . . . . . . . . . 13  |-  ( A 
C_  X  ->  (
v  e.  A  -> 
v  e.  X ) )
1311, 12anim12d 586 . . . . . . . . . . . 12  |-  ( A 
C_  X  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  e.  X  /\  v  e.  X ) ) )
1413imp 445 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  ( u  e.  A  /\  v  e.  A
) )  ->  (
u  e.  X  /\  v  e.  X )
)
15 oveq1 6657 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
x M y )  =  ( u M y ) )
16 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  ( F `  x )  =  ( F `  u ) )
1716oveq1d 6665 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
( F `  x
) N ( F `
 y ) )  =  ( ( F `
 u ) N ( F `  y
) ) )
1815, 17eqeq12d 2637 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
( x M y )  =  ( ( F `  x ) N ( F `  y ) )  <->  ( u M y )  =  ( ( F `  u ) N ( F `  y ) ) ) )
19 oveq2 6658 . . . . . . . . . . . . 13  |-  ( y  =  v  ->  (
u M y )  =  ( u M v ) )
20 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  ( F `  y )  =  ( F `  v ) )
2120oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  =  v  ->  (
( F `  u
) N ( F `
 y ) )  =  ( ( F `
 u ) N ( F `  v
) ) )
2219, 21eqeq12d 2637 . . . . . . . . . . . 12  |-  ( y  =  v  ->  (
( u M y )  =  ( ( F `  u ) N ( F `  y ) )  <->  ( u M v )  =  ( ( F `  u ) N ( F `  v ) ) ) )
2318, 22rspc2v 3322 . . . . . . . . . . 11  |-  ( ( u  e.  X  /\  v  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x
) N ( F `
 y ) )  ->  ( u M v )  =  ( ( F `  u
) N ( F `
 v ) ) ) )
2414, 23syl 17 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  ( u  e.  A  /\  v  e.  A
) )  ->  ( A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) )  -> 
( u M v )  =  ( ( F `  u ) N ( F `  v ) ) ) )
2524imp 445 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  ( u  e.  A  /\  v  e.  A
) )  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  -> 
( u M v )  =  ( ( F `  u ) N ( F `  v ) ) )
2625an32s 846 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u M v )  =  ( ( F `  u ) N ( F `  v ) ) )
2726adantlrl 756 . . . . . . 7  |-  ( ( ( A  C_  X  /\  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u M v )  =  ( ( F `  u ) N ( F `  v ) ) )
2827adantlll 754 . . . . . 6  |-  ( ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y ) )  /\  A  C_  X )  /\  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u M v )  =  ( ( F `  u ) N ( F `  v ) ) )
29 ismtyres.3 . . . . . . . . 9  |-  S  =  ( M  |`  ( A  X.  A ) )
3029oveqi 6663 . . . . . . . 8  |-  ( u S v )  =  ( u ( M  |`  ( A  X.  A
) ) v )
31 ovres 6800 . . . . . . . 8  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( u ( M  |`  ( A  X.  A
) ) v )  =  ( u M v ) )
3230, 31syl5eq 2668 . . . . . . 7  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( u S v )  =  ( u M v ) )
3332adantl 482 . . . . . 6  |-  ( ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y ) )  /\  A  C_  X )  /\  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u S v )  =  ( u M v ) )
34 fvres 6207 . . . . . . . . . . 11  |-  ( u  e.  A  ->  (
( F  |`  A ) `
 u )  =  ( F `  u
) )
3534ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( F  |`  A ) `  u
)  =  ( F `
 u ) )
36 fvres 6207 . . . . . . . . . . 11  |-  ( v  e.  A  ->  (
( F  |`  A ) `
 v )  =  ( F `  v
) )
3736ad2antll 765 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( F  |`  A ) `  v
)  =  ( F `
 v ) )
3835, 37oveq12d 6668 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( ( F  |`  A ) `  u
) T ( ( F  |`  A ) `  v ) )  =  ( ( F `  u ) T ( F `  v ) ) )
39 ismtyres.4 . . . . . . . . . . 11  |-  T  =  ( N  |`  ( B  X.  B ) )
4039oveqi 6663 . . . . . . . . . 10  |-  ( ( F `  u ) T ( F `  v ) )  =  ( ( F `  u ) ( N  |`  ( B  X.  B
) ) ( F `
 v ) )
41 f1ofun 6139 . . . . . . . . . . . . . . . 16  |-  ( F : X -1-1-onto-> Y  ->  Fun  F )
4241adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  ->  Fun  F )
43 f1odm 6141 . . . . . . . . . . . . . . . . 17  |-  ( F : X -1-1-onto-> Y  ->  dom  F  =  X )
4443sseq2d 3633 . . . . . . . . . . . . . . . 16  |-  ( F : X -1-1-onto-> Y  ->  ( A  C_ 
dom  F  <->  A  C_  X ) )
4544biimparc 504 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  ->  A  C_ 
dom  F )
46 funfvima2 6493 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( u  e.  A  ->  ( F `  u
)  e.  ( F
" A ) ) )
4742, 45, 46syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  ->  (
u  e.  A  -> 
( F `  u
)  e.  ( F
" A ) ) )
4847imp 445 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  u  e.  A
)  ->  ( F `  u )  e.  ( F " A ) )
49 ismtyres.2 . . . . . . . . . . . . 13  |-  B  =  ( F " A
)
5048, 49syl6eleqr 2712 . . . . . . . . . . . 12  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  u  e.  A
)  ->  ( F `  u )  e.  B
)
5150adantrr 753 . . . . . . . . . . 11  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( F `  u
)  e.  B )
52 funfvima2 6493 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( v  e.  A  ->  ( F `  v
)  e.  ( F
" A ) ) )
5342, 45, 52syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  ->  (
v  e.  A  -> 
( F `  v
)  e.  ( F
" A ) ) )
5453imp 445 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  v  e.  A
)  ->  ( F `  v )  e.  ( F " A ) )
5554, 49syl6eleqr 2712 . . . . . . . . . . . 12  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  v  e.  A
)  ->  ( F `  v )  e.  B
)
5655adantrl 752 . . . . . . . . . . 11  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( F `  v
)  e.  B )
5751, 56ovresd 6801 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( F `  u ) ( N  |`  ( B  X.  B
) ) ( F `
 v ) )  =  ( ( F `
 u ) N ( F `  v
) ) )
5840, 57syl5eq 2668 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( F `  u ) T ( F `  v ) )  =  ( ( F `  u ) N ( F `  v ) ) )
5938, 58eqtrd 2656 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  F : X -1-1-onto-> Y )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( ( F  |`  A ) `  u
) T ( ( F  |`  A ) `  v ) )  =  ( ( F `  u ) N ( F `  v ) ) )
6059adantlrr 757 . . . . . . 7  |-  ( ( ( A  C_  X  /\  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( ( F  |`  A ) `  u
) T ( ( F  |`  A ) `  v ) )  =  ( ( F `  u ) N ( F `  v ) ) )
6160adantlll 754 . . . . . 6  |-  ( ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y ) )  /\  A  C_  X )  /\  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( ( F  |`  A ) `  u
) T ( ( F  |`  A ) `  v ) )  =  ( ( F `  u ) N ( F `  v ) ) )
6228, 33, 613eqtr4d 2666 . . . . 5  |-  ( ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y ) )  /\  A  C_  X )  /\  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u S v )  =  ( ( ( F  |`  A ) `
 u ) T ( ( F  |`  A ) `  v
) ) )
6362ralrimivva 2971 . . . 4  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y ) )  /\  A  C_  X )  /\  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) ) )  ->  A. u  e.  A  A. v  e.  A  ( u S v )  =  ( ( ( F  |`  A ) `
 u ) T ( ( F  |`  A ) `  v
) ) )
6463adantlrl 756 . . 3  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  /\  ( F : X
-1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x
) N ( F `
 y ) ) ) )  ->  A. u  e.  A  A. v  e.  A  ( u S v )  =  ( ( ( F  |`  A ) `  u
) T ( ( F  |`  A ) `  v ) ) )
6510, 64mpdan 702 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  A. u  e.  A  A. v  e.  A  ( u S v )  =  ( ( ( F  |`  A ) `
 u ) T ( ( F  |`  A ) `  v
) ) )
66 xmetres2 22166 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  A  C_  X
)  ->  ( M  |`  ( A  X.  A
) )  e.  ( *Met `  A
) )
6729, 66syl5eqel 2705 . . . 4  |-  ( ( M  e.  ( *Met `  X )  /\  A  C_  X
)  ->  S  e.  ( *Met `  A
) )
6867ad2ant2rl 785 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  S  e.  ( *Met `  A ) )
69 simplr 792 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  N  e.  ( *Met `  Y ) )
70 imassrn 5477 . . . . . . . 8  |-  ( F
" A )  C_  ran  F
7149, 70eqsstri 3635 . . . . . . 7  |-  B  C_  ran  F
72 f1ofo 6144 . . . . . . . 8  |-  ( F : X -1-1-onto-> Y  ->  F : X -onto-> Y )
73 forn 6118 . . . . . . . 8  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
743, 72, 733syl 18 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  ran  F  =  Y )
7571, 74syl5sseq 3653 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  B  C_  Y )
76 xmetres2 22166 . . . . . 6  |-  ( ( N  e.  ( *Met `  Y )  /\  B  C_  Y
)  ->  ( N  |`  ( B  X.  B
) )  e.  ( *Met `  B
) )
7769, 75, 76syl2anc 693 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  -> 
( N  |`  ( B  X.  B ) )  e.  ( *Met `  B ) )
7839, 77syl5eqel 2705 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  T  e.  ( *Met `  B ) )
7949fveq2i 6194 . . . 4  |-  ( *Met `  B )  =  ( *Met `  ( F " A
) )
8078, 79syl6eleq 2711 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  ->  T  e.  ( *Met `  ( F " A ) ) )
81 isismty 33600 . . 3  |-  ( ( S  e.  ( *Met `  A )  /\  T  e.  ( *Met `  ( F " A ) ) )  ->  ( ( F  |`  A )  e.  ( S  Ismty  T )  <-> 
( ( F  |`  A ) : A -1-1-onto-> ( F " A )  /\  A. u  e.  A  A. v  e.  A  (
u S v )  =  ( ( ( F  |`  A ) `  u ) T ( ( F  |`  A ) `
 v ) ) ) ) )
8268, 80, 81syl2anc 693 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  -> 
( ( F  |`  A )  e.  ( S  Ismty  T )  <->  ( ( F  |`  A ) : A -1-1-onto-> ( F " A
)  /\  A. u  e.  A  A. v  e.  A  ( u S v )  =  ( ( ( F  |`  A ) `  u
) T ( ( F  |`  A ) `  v ) ) ) ) )
838, 65, 82mpbir2and 957 1  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  /\  ( F  e.  ( M  Ismty  N )  /\  A  C_  X ) )  -> 
( F  |`  A )  e.  ( S  Ismty  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   *Metcxmt 19731    Ismty cismty 33597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739  df-ismty 33598
This theorem is referenced by:  reheibor  33638
  Copyright terms: Public domain W3C validator