Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reheibor Structured version   Visualization version   Unicode version

Theorem reheibor 33638
Description: Heine-Borel theorem for real numbers. A subset of  RR is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
reheibor.2  |-  M  =  ( ( abs  o.  -  )  |`  ( Y  X.  Y ) )
reheibor.3  |-  T  =  ( MetOpen `  M )
reheibor.4  |-  U  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
reheibor  |-  ( Y 
C_  RR  ->  ( T  e.  Comp  <->  ( Y  e.  ( Clsd `  U
)  /\  M  e.  ( Bnd `  Y ) ) ) )

Proof of Theorem reheibor
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 7572 . . . 4  |-  1o  =  { (/) }
2 snfi 8038 . . . 4  |-  { (/) }  e.  Fin
31, 2eqeltri 2697 . . 3  |-  1o  e.  Fin
4 imassrn 5477 . . . . 5  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  C_  ran  ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
5 0ex 4790 . . . . . . . . . 10  |-  (/)  e.  _V
6 eqid 2622 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
7 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  =  ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
86, 7ismrer1 33637 . . . . . . . . . 10  |-  ( (/)  e.  _V  ->  ( x  e.  RR  |->  ( { (/) }  X.  { x }
) )  e.  ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) 
Ismty  ( Rn `  { (/)
} ) ) )
95, 8ax-mp 5 . . . . . . . . 9  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  e.  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) 
Ismty  ( Rn `  { (/)
} ) )
101fveq2i 6194 . . . . . . . . . 10  |-  ( Rn
`  1o )  =  ( Rn `  { (/)
} )
1110oveq2i 6661 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) )  =  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  { (/) } ) )
129, 11eleqtrri 2700 . . . . . . . 8  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  e.  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) 
Ismty  ( Rn `  1o ) )
136rexmet 22594 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
14 eqid 2622 . . . . . . . . . . 11  |-  ( RR 
^m  1o )  =  ( RR  ^m  1o )
1514rrnmet 33628 . . . . . . . . . 10  |-  ( 1o  e.  Fin  ->  ( Rn `  1o )  e.  ( Met `  ( RR  ^m  1o ) ) )
16 metxmet 22139 . . . . . . . . . 10  |-  ( ( Rn `  1o )  e.  ( Met `  ( RR  ^m  1o ) )  ->  ( Rn `  1o )  e.  ( *Met `  ( RR 
^m  1o ) ) )
173, 15, 16mp2b 10 . . . . . . . . 9  |-  ( Rn
`  1o )  e.  ( *Met `  ( RR  ^m  1o ) )
18 isismty 33600 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  ( Rn `  1o )  e.  ( *Met `  ( RR  ^m  1o ) ) )  ->  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  e.  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) )  <-> 
( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) : RR -1-1-onto-> ( RR  ^m  1o )  /\  A. y  e.  RR  A. z  e.  RR  (
y ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) z )  =  ( ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) `  y
) ( Rn `  1o ) ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) `  z ) ) ) ) )
1913, 17, 18mp2an 708 . . . . . . . 8  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  e.  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) )  <-> 
( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) : RR -1-1-onto-> ( RR  ^m  1o )  /\  A. y  e.  RR  A. z  e.  RR  (
y ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) z )  =  ( ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) `  y
) ( Rn `  1o ) ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) `  z ) ) ) )
2012, 19mpbi 220 . . . . . . 7  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  1o )  /\  A. y  e.  RR  A. z  e.  RR  ( y ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) z )  =  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) `
 y ) ( Rn `  1o ) ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) `  z
) ) )
2120simpli 474 . . . . . 6  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  1o )
22 f1of 6137 . . . . . 6  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  1o )  ->  ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) : RR --> ( RR  ^m  1o ) )
23 frn 6053 . . . . . 6  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) : RR --> ( RR 
^m  1o )  ->  ran  ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) 
C_  ( RR  ^m  1o ) )
2421, 22, 23mp2b 10 . . . . 5  |-  ran  (
x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) 
C_  ( RR  ^m  1o )
254, 24sstri 3612 . . . 4  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  C_  ( RR  ^m  1o )
2625a1i 11 . . 3  |-  ( Y 
C_  RR  ->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  C_  ( RR  ^m  1o ) )
27 eqid 2622 . . . 4  |-  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  =  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )
28 eqid 2622 . . . 4  |-  ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  =  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )
29 eqid 2622 . . . 4  |-  ( MetOpen `  ( Rn `  1o ) )  =  ( MetOpen `  ( Rn `  1o ) )
3014, 27, 28, 29rrnheibor 33636 . . 3  |-  ( ( 1o  e.  Fin  /\  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
)  C_  ( RR  ^m  1o ) )  -> 
( ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp  <->  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  e.  ( Clsd `  ( MetOpen
`  ( Rn `  1o ) ) )  /\  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) )  e.  ( Bnd `  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
313, 26, 30sylancr 695 . 2  |-  ( Y 
C_  RR  ->  ( (
MetOpen `  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )  e.  Comp  <->  (
( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
)  e.  ( Clsd `  ( MetOpen `  ( Rn `  1o ) ) )  /\  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( Bnd `  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) )
32 reheibor.2 . . . . . . 7  |-  M  =  ( ( abs  o.  -  )  |`  ( Y  X.  Y ) )
33 cnxmet 22576 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
34 id 22 . . . . . . . . 9  |-  ( Y 
C_  RR  ->  Y  C_  RR )
35 ax-resscn 9993 . . . . . . . . 9  |-  RR  C_  CC
3634, 35syl6ss 3615 . . . . . . . 8  |-  ( Y 
C_  RR  ->  Y  C_  CC )
37 xmetres2 22166 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  Y  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y ) )
3833, 36, 37sylancr 695 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( ( abs  o.  -  )  |`  ( Y  X.  Y
) )  e.  ( *Met `  Y
) )
3932, 38syl5eqel 2705 . . . . . 6  |-  ( Y 
C_  RR  ->  M  e.  ( *Met `  Y ) )
40 xmetres2 22166 . . . . . . 7  |-  ( ( ( Rn `  1o )  e.  ( *Met `  ( RR  ^m  1o ) )  /\  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  C_  ( RR  ^m  1o ) )  ->  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( *Met `  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )
4117, 26, 40sylancr 695 . . . . . 6  |-  ( Y 
C_  RR  ->  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( *Met `  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )
42 reheibor.3 . . . . . . 7  |-  T  =  ( MetOpen `  M )
4342, 28ismtyhmeo 33604 . . . . . 6  |-  ( ( M  e.  ( *Met `  Y )  /\  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( *Met `  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  ->  ( M  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) 
C_  ( T Homeo (
MetOpen `  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) ) )
4439, 41, 43syl2anc 693 . . . . 5  |-  ( Y 
C_  RR  ->  ( M 
Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) 
C_  ( T Homeo (
MetOpen `  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) ) )
4513a1i 11 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR ) )
4617a1i 11 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( Rn
`  1o )  e.  ( *Met `  ( RR  ^m  1o ) ) )
4712a1i 11 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  e.  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) 
Ismty  ( Rn `  1o ) ) )
48 eqid 2622 . . . . . . . 8  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  =  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
)
49 eqid 2622 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )  =  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )
5048, 49, 27ismtyres 33607 . . . . . . 7  |-  ( ( ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )  /\  ( Rn `  1o )  e.  ( *Met `  ( RR  ^m  1o ) ) )  /\  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  e.  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) )  /\  Y  C_  RR ) )  ->  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y
) )  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
5145, 46, 47, 34, 50syl22anc 1327 . . . . . 6  |-  ( Y 
C_  RR  ->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y
) )  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
52 xpss12 5225 . . . . . . . . . 10  |-  ( ( Y  C_  RR  /\  Y  C_  RR )  ->  ( Y  X.  Y )  C_  ( RR  X.  RR ) )
5352anidms 677 . . . . . . . . 9  |-  ( Y 
C_  RR  ->  ( Y  X.  Y )  C_  ( RR  X.  RR ) )
5453resabs1d 5428 . . . . . . . 8  |-  ( Y 
C_  RR  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )  =  ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) )
5554, 32syl6eqr 2674 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )  =  M )
5655oveq1d 6665 . . . . . 6  |-  ( Y 
C_  RR  ->  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  |`  ( Y  X.  Y
) )  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )  =  ( M  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
5751, 56eleqtrd 2703 . . . . 5  |-  ( Y 
C_  RR  ->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( M  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
5844, 57sseldd 3604 . . . 4  |-  ( Y 
C_  RR  ->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( T Homeo ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) ) )
59 hmphi 21580 . . . 4  |-  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( T Homeo ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) )  ->  T  ~=  ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
6058, 59syl 17 . . 3  |-  ( Y 
C_  RR  ->  T  ~=  ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
61 cmphmph 21591 . . . 4  |-  ( T  ~=  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ->  ( T  e. 
Comp  ->  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp ) )
62 hmphsym 21585 . . . . 5  |-  ( T  ~=  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ->  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ~=  T )
63 cmphmph 21591 . . . . 5  |-  ( (
MetOpen `  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )  ~=  T  ->  ( ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp  ->  T  e. 
Comp ) )
6462, 63syl 17 . . . 4  |-  ( T  ~=  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ->  ( ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp  ->  T  e. 
Comp ) )
6561, 64impbid 202 . . 3  |-  ( T  ~=  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ->  ( T  e. 
Comp 
<->  ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )  e.  Comp ) )
6660, 65syl 17 . 2  |-  ( Y 
C_  RR  ->  ( T  e.  Comp  <->  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp ) )
67 reheibor.4 . . . . . . . 8  |-  U  =  ( topGen `  ran  (,) )
68 eqid 2622 . . . . . . . . 9  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
696, 68tgioo 22599 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
7067, 69eqtri 2644 . . . . . . 7  |-  U  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )
7170, 29ismtyhmeo 33604 . . . . . 6  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  ( Rn `  1o )  e.  ( *Met `  ( RR  ^m  1o ) ) )  ->  (
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) 
Ismty  ( Rn `  1o ) )  C_  ( U Homeo ( MetOpen `  ( Rn `  1o ) ) ) )
7213, 17, 71mp2an 708 . . . . 5  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) ) 
C_  ( U Homeo (
MetOpen `  ( Rn `  1o ) ) )
7372, 12sselii 3600 . . . 4  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  e.  ( U Homeo ( MetOpen `  ( Rn `  1o ) ) )
74 retopon 22567 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
7567, 74eqeltri 2697 . . . . . 6  |-  U  e.  (TopOn `  RR )
7675toponunii 20721 . . . . 5  |-  RR  =  U. U
7776hmeocld 21570 . . . 4  |-  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  e.  ( U Homeo (
MetOpen `  ( Rn `  1o ) ) )  /\  Y  C_  RR )  -> 
( Y  e.  (
Clsd `  U )  <->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  e.  ( Clsd `  ( MetOpen
`  ( Rn `  1o ) ) ) ) )
7873, 34, 77sylancr 695 . . 3  |-  ( Y 
C_  RR  ->  ( Y  e.  ( Clsd `  U
)  <->  ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  e.  (
Clsd `  ( MetOpen `  ( Rn `  1o ) ) ) ) )
79 ismtybnd 33606 . . . 4  |-  ( ( M  e.  ( *Met `  Y )  /\  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( *Met `  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) )  /\  ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  |`  Y )  e.  ( M  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )  -> 
( M  e.  ( Bnd `  Y )  <-> 
( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) )  e.  ( Bnd `  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )
8039, 41, 57, 79syl3anc 1326 . . 3  |-  ( Y 
C_  RR  ->  ( M  e.  ( Bnd `  Y
)  <->  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( Bnd `  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )
8178, 80anbi12d 747 . 2  |-  ( Y 
C_  RR  ->  ( ( Y  e.  ( Clsd `  U )  /\  M  e.  ( Bnd `  Y
) )  <->  ( (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  e.  ( Clsd `  ( MetOpen
`  ( Rn `  1o ) ) )  /\  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) )  e.  ( Bnd `  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
8231, 66, 813bitr4d 300 1  |-  ( Y 
C_  RR  ->  ( T  e.  Comp  <->  ( Y  e.  ( Clsd `  U
)  /\  M  e.  ( Bnd `  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   Fincfn 7955   CCcc 9934   RRcr 9935    - cmin 10266   (,)cioo 12175   abscabs 13974   topGenctg 16098   *Metcxmt 19731   Metcme 19732   MetOpencmopn 19736  TopOnctopon 20715   Clsdccld 20820   Compccmp 21189   Homeochmeo 21556    ~= chmph 21557   Bndcbnd 33566    Ismty cismty 33597   Rncrrn 33624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-topgen 16104  df-prds 16108  df-pws 16110  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-lm 21033  df-haus 21119  df-cmp 21190  df-hmeo 21558  df-hmph 21559  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-cfil 23053  df-cau 23054  df-cmet 23055  df-totbnd 33567  df-bnd 33578  df-ismty 33598  df-rrn 33625
This theorem is referenced by:  icccmpALT  33640
  Copyright terms: Public domain W3C validator