![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version Unicode version |
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ovresd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ovresd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ovresd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovresd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ovresd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ovres 6800 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 693 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-res 5126 df-iota 5851 df-fv 5896 df-ov 6653 |
This theorem is referenced by: sscres 16483 fullsubc 16510 fullresc 16511 funcres2c 16561 psmetres2 22119 xmetres2 22166 prdsdsf 22172 xpsdsval 22186 xmssym 22270 xmstri2 22271 mstri2 22272 xmstri 22273 mstri 22274 xmstri3 22275 mstri3 22276 msrtri 22277 tmsxpsval 22343 ngptgp 22440 nlmvscn 22491 nrginvrcn 22496 nghmcn 22549 cnmpt1ds 22645 cnmpt2ds 22646 ipcn 23045 caussi 23095 causs 23096 minveclem2 23197 minveclem3b 23199 minveclem3 23200 minveclem4 23203 minveclem6 23205 ftc1lem6 23804 ulmdvlem1 24154 abelth 24195 cxpcn3 24489 rlimcnp 24692 hhssnv 28121 madjusmdetlem3 29895 qqhcn 30035 qqhucn 30036 ftc1cnnc 33484 ismtyres 33607 isdrngo2 33757 rngchom 41967 ringchom 42013 irinitoringc 42069 rhmsubclem4 42089 |
Copyright terms: Public domain | W3C validator |