Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzisoeu Structured version   Visualization version   Unicode version

Theorem fzisoeu 39514
Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso 13246 for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fzisoeu.h  |-  ( ph  ->  H  e.  Fin )
fzisoeu.or  |-  ( ph  ->  <  Or  H )
fzisoeu.m  |-  ( ph  ->  M  e.  ZZ )
fzisoeu.4  |-  N  =  ( ( # `  H
)  +  ( M  -  1 ) )
Assertion
Ref Expression
fzisoeu  |-  ( ph  ->  E! f  f  Isom  <  ,  <  ( ( M ... N ) ,  H ) )
Distinct variable groups:    f, H    f, M    f, N
Allowed substitution hint:    ph( f)

Proof of Theorem fzisoeu
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 12343 . . . . . . . . 9  |-  ( M ... N )  C_  ZZ
2 zssre 11384 . . . . . . . . 9  |-  ZZ  C_  RR
31, 2sstri 3612 . . . . . . . 8  |-  ( M ... N )  C_  RR
4 ltso 10118 . . . . . . . 8  |-  <  Or  RR
5 soss 5053 . . . . . . . 8  |-  ( ( M ... N ) 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  ( M ... N ) ) )
63, 4, 5mp2 9 . . . . . . 7  |-  <  Or  ( M ... N )
7 fzfi 12771 . . . . . . 7  |-  ( M ... N )  e. 
Fin
8 fz1iso 13246 . . . . . . 7  |-  ( (  <  Or  ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  E. h  h  Isom  <  ,  <  ( ( 1 ... ( # `  ( M ... N ) ) ) ,  ( M ... N ) ) )
96, 7, 8mp2an 708 . . . . . 6  |-  E. h  h  Isom  <  ,  <  ( ( 1 ... ( # `
 ( M ... N ) ) ) ,  ( M ... N ) )
10 fzisoeu.4 . . . . . . . . . . . . . . . 16  |-  N  =  ( ( # `  H
)  +  ( M  -  1 ) )
11 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( H  =  (/)  ->  ( # `  H )  =  (
# `  (/) ) )
12 hash0 13158 . . . . . . . . . . . . . . . . . 18  |-  ( # `  (/) )  =  0
1311, 12syl6eq 2672 . . . . . . . . . . . . . . . . 17  |-  ( H  =  (/)  ->  ( # `  H )  =  0 )
1413oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( H  =  (/)  ->  ( (
# `  H )  +  ( M  - 
1 ) )  =  ( 0  +  ( M  -  1 ) ) )
1510, 14syl5eq 2668 . . . . . . . . . . . . . . 15  |-  ( H  =  (/)  ->  N  =  ( 0  +  ( M  -  1 ) ) )
1615oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( H  =  (/)  ->  ( M ... N )  =  ( M ... (
0  +  ( M  -  1 ) ) ) )
1716adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  H  =  (/) )  ->  ( M ... N )  =  ( M ... ( 0  +  ( M  - 
1 ) ) ) )
18 fzisoeu.m . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ZZ )
1918zcnd 11483 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  CC )
20 1cnd 10056 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  CC )
2119, 20subcld 10392 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  -  1 )  e.  CC )
2221addid2d 10237 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 0  +  ( M  -  1 ) )  =  ( M  -  1 ) )
2322oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ... (
0  +  ( M  -  1 ) ) )  =  ( M ... ( M  - 
1 ) ) )
2418zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  RR )
2524ltm1d 10956 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  -  1 )  <  M )
26 peano2zm 11420 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2718, 26syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
28 fzn 12357 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
2918, 27, 28syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M  - 
1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
3025, 29mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ... ( M  -  1 ) )  =  (/) )
3123, 30eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ... (
0  +  ( M  -  1 ) ) )  =  (/) )
3231adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  H  =  (/) )  ->  ( M ... ( 0  +  ( M  -  1 ) ) )  =  (/) )
33 eqcom 2629 . . . . . . . . . . . . . . 15  |-  ( H  =  (/)  <->  (/)  =  H )
3433biimpi 206 . . . . . . . . . . . . . 14  |-  ( H  =  (/)  ->  (/)  =  H )
3534adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  H  =  (/) )  ->  (/)  =  H )
3617, 32, 353eqtrd 2660 . . . . . . . . . . . 12  |-  ( (
ph  /\  H  =  (/) )  ->  ( M ... N )  =  H )
3736fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  H  =  (/) )  ->  ( # `  ( M ... N ) )  =  ( # `  H
) )
3820, 19pncan3d 10395 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  +  ( M  -  1 ) )  =  M )
3938eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  =  ( 1  +  ( M  - 
1 ) ) )
4039adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  H  =  (/) )  ->  M  =  ( 1  +  ( M  -  1 ) ) )
41 1red 10055 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  H  =  (/) )  ->  1  e.  RR )
42 neqne 2802 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  H  =  (/)  ->  H  =/=  (/) )
4342adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  -.  H  =  (/) )  ->  H  =/=  (/) )
44 fzisoeu.h . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  H  e.  Fin )
4544adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  -.  H  =  (/) )  ->  H  e.  Fin )
46 hashnncl 13157 . . . . . . . . . . . . . . . . . . . 20  |-  ( H  e.  Fin  ->  (
( # `  H )  e.  NN  <->  H  =/=  (/) ) )
4745, 46syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  -.  H  =  (/) )  ->  (
( # `  H )  e.  NN  <->  H  =/=  (/) ) )
4843, 47mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  -.  H  =  (/) )  ->  ( # `
 H )  e.  NN )
4948nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  H  =  (/) )  ->  ( # `
 H )  e.  RR )
5027zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( M  -  1 )  e.  RR )
5150adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  H  =  (/) )  ->  ( M  -  1 )  e.  RR )
5248nnge1d 11063 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  H  =  (/) )  ->  1  <_  ( # `  H
) )
5341, 49, 51, 52leadd1dd 10641 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  H  =  (/) )  ->  (
1  +  ( M  -  1 ) )  <_  ( ( # `  H )  +  ( M  -  1 ) ) )
5453, 10syl6breqr 4695 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  H  =  (/) )  ->  (
1  +  ( M  -  1 ) )  <_  N )
5540, 54eqbrtrd 4675 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  H  =  (/) )  ->  M  <_  N )
5618adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  H  =  (/) )  ->  M  e.  ZZ )
57 hashcl 13147 . . . . . . . . . . . . . . . . . . 19  |-  ( H  e.  Fin  ->  ( # `
 H )  e. 
NN0 )
58 nn0z 11400 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  H )  e.  NN0  ->  ( # `  H
)  e.  ZZ )
5944, 57, 583syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  H
)  e.  ZZ )
6059, 27zaddcld 11486 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( # `  H
)  +  ( M  -  1 ) )  e.  ZZ )
6110, 60syl5eqel 2705 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  ZZ )
6261adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  H  =  (/) )  ->  N  e.  ZZ )
63 eluz 11701 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
6456, 62, 63syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  H  =  (/) )  ->  ( N  e.  ( ZZ>= `  M )  <->  M  <_  N ) )
6555, 64mpbird 247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  H  =  (/) )  ->  N  e.  ( ZZ>= `  M )
)
66 hashfz 13214 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( # `  ( M ... N ) )  =  ( ( N  -  M )  +  1 ) )
6765, 66syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  H  =  (/) )  ->  ( # `
 ( M ... N ) )  =  ( ( N  -  M )  +  1 ) )
6810oveq1i 6660 . . . . . . . . . . . . . . . 16  |-  ( N  -  M )  =  ( ( ( # `  H )  +  ( M  -  1 ) )  -  M )
6944, 57syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  H
)  e.  NN0 )
7069nn0cnd 11353 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( # `  H
)  e.  CC )
7170, 21, 19addsubassd 10412 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( # `  H )  +  ( M  -  1 ) )  -  M )  =  ( ( # `  H )  +  ( ( M  -  1 )  -  M ) ) )
7268, 71syl5eq 2668 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  -  M
)  =  ( (
# `  H )  +  ( ( M  -  1 )  -  M ) ) )
7319, 20negsubd 10398 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M  +  -u
1 )  =  ( M  -  1 ) )
7473eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( M  -  1 )  =  ( M  +  -u 1 ) )
7574oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( M  - 
1 )  -  M
)  =  ( ( M  +  -u 1
)  -  M ) )
7620negcld 10379 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
-u 1  e.  CC )
7719, 76pncan2d 10394 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( M  +  -u 1 )  -  M
)  =  -u 1
)
7875, 77eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M  - 
1 )  -  M
)  =  -u 1
)
7978oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( # `  H
)  +  ( ( M  -  1 )  -  M ) )  =  ( ( # `  H )  +  -u
1 ) )
8072, 79eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  -  M
)  =  ( (
# `  H )  +  -u 1 ) )
8180oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( N  -  M )  +  1 )  =  ( ( ( # `  H
)  +  -u 1
)  +  1 ) )
8281adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  H  =  (/) )  ->  (
( N  -  M
)  +  1 )  =  ( ( (
# `  H )  +  -u 1 )  +  1 ) )
8370, 20negsubd 10398 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( # `  H
)  +  -u 1
)  =  ( (
# `  H )  -  1 ) )
8483oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( # `  H )  +  -u
1 )  +  1 )  =  ( ( ( # `  H
)  -  1 )  +  1 ) )
8570, 20npcand 10396 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( # `  H )  -  1 )  +  1 )  =  ( # `  H
) )
8684, 85eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( # `  H )  +  -u
1 )  +  1 )  =  ( # `  H ) )
8786adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  H  =  (/) )  ->  (
( ( # `  H
)  +  -u 1
)  +  1 )  =  ( # `  H
) )
8867, 82, 873eqtrd 2660 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  H  =  (/) )  ->  ( # `
 ( M ... N ) )  =  ( # `  H
) )
8937, 88pm2.61dan 832 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( M ... N ) )  =  ( # `  H
) )
9089oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... ( # `
 ( M ... N ) ) )  =  ( 1 ... ( # `  H
) ) )
91 isoeq4 6570 . . . . . . . . 9  |-  ( ( 1 ... ( # `  ( M ... N
) ) )  =  ( 1 ... ( # `
 H ) )  ->  ( h  Isom  <  ,  <  ( ( 1 ... ( # `  ( M ... N ) ) ) ,  ( M ... N ) )  <-> 
h  Isom  <  ,  <  ( ( 1 ... ( # `
 H ) ) ,  ( M ... N ) ) ) )
9290, 91syl 17 . . . . . . . 8  |-  ( ph  ->  ( h  Isom  <  ,  <  ( ( 1 ... ( # `  ( M ... N ) ) ) ,  ( M ... N ) )  <-> 
h  Isom  <  ,  <  ( ( 1 ... ( # `
 H ) ) ,  ( M ... N ) ) ) )
9392biimpd 219 . . . . . . 7  |-  ( ph  ->  ( h  Isom  <  ,  <  ( ( 1 ... ( # `  ( M ... N ) ) ) ,  ( M ... N ) )  ->  h  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  ( M ... N ) ) ) )
9493eximdv 1846 . . . . . 6  |-  ( ph  ->  ( E. h  h 
Isom  <  ,  <  (
( 1 ... ( # `
 ( M ... N ) ) ) ,  ( M ... N ) )  ->  E. h  h  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  ( M ... N ) ) ) )
959, 94mpi 20 . . . . 5  |-  ( ph  ->  E. h  h  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  ( M ... N ) ) )
96 fzisoeu.or . . . . . 6  |-  ( ph  ->  <  Or  H )
97 fz1iso 13246 . . . . . 6  |-  ( (  <  Or  H  /\  H  e.  Fin )  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  H
) )
9896, 44, 97syl2anc 693 . . . . 5  |-  ( ph  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  H
) )
99 eeanv 2182 . . . . 5  |-  ( E. h E. g ( h  Isom  <  ,  <  ( ( 1 ... ( # `
 H ) ) ,  ( M ... N ) )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 H ) ) ,  H ) )  <-> 
( E. h  h 
Isom  <  ,  <  (
( 1 ... ( # `
 H ) ) ,  ( M ... N ) )  /\  E. g  g  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  H
) ) )
10095, 98, 99sylanbrc 698 . . . 4  |-  ( ph  ->  E. h E. g
( h  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  ( M ... N ) )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  H
) ) )
101 isocnv 6580 . . . . . . . 8  |-  ( h 
Isom  <  ,  <  (
( 1 ... ( # `
 H ) ) ,  ( M ... N ) )  ->  `' h  Isom  <  ,  <  ( ( M ... N ) ,  ( 1 ... ( # `  H ) ) ) )
102101ad2antrl 764 . . . . . . 7  |-  ( (
ph  /\  ( h  Isom  <  ,  <  (
( 1 ... ( # `
 H ) ) ,  ( M ... N ) )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 H ) ) ,  H ) ) )  ->  `' h  Isom  <  ,  <  (
( M ... N
) ,  ( 1 ... ( # `  H
) ) ) )
103 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( h  Isom  <  ,  <  (
( 1 ... ( # `
 H ) ) ,  ( M ... N ) )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 H ) ) ,  H ) ) )  ->  g  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  H
) )
104 isotr 6586 . . . . . . 7  |-  ( ( `' h  Isom  <  ,  <  ( ( M ... N ) ,  ( 1 ... ( # `  H ) ) )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  H
) )  ->  (
g  o.  `' h
)  Isom  <  ,  <  ( ( M ... N
) ,  H ) )
105102, 103, 104syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( h  Isom  <  ,  <  (
( 1 ... ( # `
 H ) ) ,  ( M ... N ) )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 H ) ) ,  H ) ) )  ->  ( g  o.  `' h )  Isom  <  ,  <  ( ( M ... N ) ,  H ) )
106105ex 450 . . . . 5  |-  ( ph  ->  ( ( h  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  ( M ... N ) )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  H
) )  ->  (
g  o.  `' h
)  Isom  <  ,  <  ( ( M ... N
) ,  H ) ) )
1071062eximdv 1848 . . . 4  |-  ( ph  ->  ( E. h E. g ( h  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  ( M ... N ) )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  H
) ) ,  H
) )  ->  E. h E. g ( g  o.  `' h )  Isom  <  ,  <  ( ( M ... N ) ,  H ) ) )
108100, 107mpd 15 . . 3  |-  ( ph  ->  E. h E. g
( g  o.  `' h )  Isom  <  ,  <  ( ( M ... N ) ,  H ) )
109 vex 3203 . . . . . . 7  |-  g  e. 
_V
110 vex 3203 . . . . . . . 8  |-  h  e. 
_V
111110cnvex 7113 . . . . . . 7  |-  `' h  e.  _V
112109, 111coex 7118 . . . . . 6  |-  ( g  o.  `' h )  e.  _V
113 isoeq1 6567 . . . . . 6  |-  ( f  =  ( g  o.  `' h )  ->  (
f  Isom  <  ,  <  ( ( M ... N
) ,  H )  <-> 
( g  o.  `' h )  Isom  <  ,  <  ( ( M ... N ) ,  H ) ) )
114112, 113spcev 3300 . . . . 5  |-  ( ( g  o.  `' h
)  Isom  <  ,  <  ( ( M ... N
) ,  H )  ->  E. f  f  Isom  <  ,  <  ( ( M ... N ) ,  H ) )
115114a1i 11 . . . 4  |-  ( ph  ->  ( ( g  o.  `' h )  Isom  <  ,  <  ( ( M ... N ) ,  H )  ->  E. f 
f  Isom  <  ,  <  ( ( M ... N
) ,  H ) ) )
116115exlimdvv 1862 . . 3  |-  ( ph  ->  ( E. h E. g ( g  o.  `' h )  Isom  <  ,  <  ( ( M ... N ) ,  H )  ->  E. f 
f  Isom  <  ,  <  ( ( M ... N
) ,  H ) ) )
117108, 116mpd 15 . 2  |-  ( ph  ->  E. f  f  Isom  <  ,  <  ( ( M ... N ) ,  H ) )
118 ltwefz 12762 . . 3  |-  <  We  ( M ... N )
119 wemoiso 7153 . . 3  |-  (  < 
We  ( M ... N )  ->  E* f  f  Isom  <  ,  <  ( ( M ... N ) ,  H
) )
120118, 119mp1i 13 . 2  |-  ( ph  ->  E* f  f  Isom  <  ,  <  ( ( M ... N ) ,  H ) )
121 eu5 2496 . 2  |-  ( E! f  f  Isom  <  ,  <  ( ( M ... N ) ,  H )  <->  ( E. f  f  Isom  <  ,  <  ( ( M ... N ) ,  H
)  /\  E* f 
f  Isom  <  ,  <  ( ( M ... N
) ,  H ) ) )
122117, 120, 121sylanbrc 698 1  |-  ( ph  ->  E! f  f  Isom  <  ,  <  ( ( M ... N ) ,  H ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   E*wmo 2471    =/= wne 2794    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034    We wwe 5072   `'ccnv 5113    o. ccom 5118   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  fourierdlem36  40360
  Copyright terms: Public domain W3C validator