Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsscrnghm Structured version   Visualization version   Unicode version

Theorem rhmsscrnghm 42026
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
rhmsscrnghm.u  |-  ( ph  ->  U  e.  V )
rhmsscrnghm.r  |-  ( ph  ->  R  =  ( Ring 
i^i  U ) )
rhmsscrnghm.s  |-  ( ph  ->  S  =  (Rng  i^i  U ) )
Assertion
Ref Expression
rhmsscrnghm  |-  ( ph  ->  ( RingHom  |`  ( R  X.  R ) )  C_cat  ( RngHomo  |`  ( S  X.  S
) ) )

Proof of Theorem rhmsscrnghm
Dummy variables  x  h  y  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringrng 41879 . . . . . 6  |-  ( r  e.  Ring  ->  r  e. Rng )
21a1i 11 . . . . 5  |-  ( ph  ->  ( r  e.  Ring  -> 
r  e. Rng ) )
32ssrdv 3609 . . . 4  |-  ( ph  ->  Ring  C_ Rng )
4 ssrin 3838 . . . 4  |-  ( Ring  C_ Rng  ->  ( Ring  i^i  U )  C_  (Rng  i^i  U ) )
53, 4syl 17 . . 3  |-  ( ph  ->  ( Ring  i^i  U ) 
C_  (Rng  i^i  U
) )
6 rhmsscrnghm.r . . 3  |-  ( ph  ->  R  =  ( Ring 
i^i  U ) )
7 rhmsscrnghm.s . . 3  |-  ( ph  ->  S  =  (Rng  i^i  U ) )
85, 6, 73sstr4d 3648 . 2  |-  ( ph  ->  R  C_  S )
9 ovres 6800 . . . . . . 7  |-  ( ( x  e.  R  /\  y  e.  R )  ->  ( x ( RingHom  |`  ( R  X.  R ) ) y )  =  ( x RingHom  y ) )
109adantl 482 . . . . . 6  |-  ( (
ph  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( x ( RingHom  |`  ( R  X.  R ) ) y )  =  ( x RingHom  y ) )
1110eleq2d 2687 . . . . 5  |-  ( (
ph  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( h  e.  ( x ( RingHom  |`  ( R  X.  R ) ) y )  <->  h  e.  ( x RingHom  y ) ) )
12 rhmisrnghm 41920 . . . . . 6  |-  ( h  e.  ( x RingHom  y
)  ->  h  e.  ( x RngHomo  y ) )
138sseld 3602 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  R  ->  x  e.  S ) )
148sseld 3602 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  R  ->  y  e.  S ) )
1513, 14anim12d 586 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  R  /\  y  e.  R )  ->  (
x  e.  S  /\  y  e.  S )
) )
1615imp 445 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( x  e.  S  /\  y  e.  S
) )
17 ovres 6800 . . . . . . . 8  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x ( RngHomo  |`  ( S  X.  S ) ) y )  =  ( x RngHomo  y ) )
1816, 17syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( x ( RngHomo  |`  ( S  X.  S ) ) y )  =  ( x RngHomo  y ) )
1918eleq2d 2687 . . . . . 6  |-  ( (
ph  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( h  e.  ( x ( RngHomo  |`  ( S  X.  S ) ) y )  <->  h  e.  ( x RngHomo  y ) ) )
2012, 19syl5ibr 236 . . . . 5  |-  ( (
ph  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( h  e.  ( x RingHom  y )  ->  h  e.  ( x
( RngHomo  |`  ( S  X.  S ) ) y ) ) )
2111, 20sylbid 230 . . . 4  |-  ( (
ph  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( h  e.  ( x ( RingHom  |`  ( R  X.  R ) ) y )  ->  h  e.  ( x ( RngHomo  |`  ( S  X.  S ) ) y ) ) )
2221ssrdv 3609 . . 3  |-  ( (
ph  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( x ( RingHom  |`  ( R  X.  R ) ) y )  C_  (
x ( RngHomo  |`  ( S  X.  S ) ) y ) )
2322ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  R  A. y  e.  R  ( x ( RingHom  |`  ( R  X.  R ) ) y )  C_  (
x ( RngHomo  |`  ( S  X.  S ) ) y ) )
24 inss1 3833 . . . . . 6  |-  ( Ring 
i^i  U )  C_  Ring
256, 24syl6eqss 3655 . . . . 5  |-  ( ph  ->  R  C_  Ring )
26 xpss12 5225 . . . . 5  |-  ( ( R  C_  Ring  /\  R  C_ 
Ring )  ->  ( R  X.  R )  C_  ( Ring  X.  Ring )
)
2725, 25, 26syl2anc 693 . . . 4  |-  ( ph  ->  ( R  X.  R
)  C_  ( Ring  X. 
Ring ) )
28 rhmfn 41918 . . . . 5  |- RingHom  Fn  ( Ring  X.  Ring )
29 fnssresb 6003 . . . . 5  |-  ( RingHom  Fn  ( Ring  X.  Ring )  ->  ( ( RingHom  |`  ( R  X.  R ) )  Fn  ( R  X.  R )  <->  ( R  X.  R )  C_  ( Ring  X.  Ring ) ) )
3028, 29mp1i 13 . . . 4  |-  ( ph  ->  ( ( RingHom  |`  ( R  X.  R ) )  Fn  ( R  X.  R )  <->  ( R  X.  R )  C_  ( Ring  X.  Ring ) ) )
3127, 30mpbird 247 . . 3  |-  ( ph  ->  ( RingHom  |`  ( R  X.  R ) )  Fn  ( R  X.  R
) )
32 inss1 3833 . . . . . 6  |-  (Rng  i^i  U )  C_ Rng
337, 32syl6eqss 3655 . . . . 5  |-  ( ph  ->  S  C_ Rng )
34 xpss12 5225 . . . . 5  |-  ( ( S  C_ Rng  /\  S  C_ Rng )  ->  ( S  X.  S )  C_  (Rng  X. Rng ) )
3533, 33, 34syl2anc 693 . . . 4  |-  ( ph  ->  ( S  X.  S
)  C_  (Rng  X. Rng ) )
36 rnghmfn 41890 . . . . 5  |- RngHomo  Fn  (Rng  X. Rng )
37 fnssresb 6003 . . . . 5  |-  ( RngHomo  Fn  (Rng  X. Rng )  ->  (
( RngHomo  |`  ( S  X.  S ) )  Fn  ( S  X.  S
)  <->  ( S  X.  S )  C_  (Rng  X. Rng ) ) )
3836, 37mp1i 13 . . . 4  |-  ( ph  ->  ( ( RngHomo  |`  ( S  X.  S ) )  Fn  ( S  X.  S )  <->  ( S  X.  S )  C_  (Rng  X. Rng ) ) )
3935, 38mpbird 247 . . 3  |-  ( ph  ->  ( RngHomo  |`  ( S  X.  S ) )  Fn  ( S  X.  S
) )
40 rhmsscrnghm.u . . . . 5  |-  ( ph  ->  U  e.  V )
41 incom 3805 . . . . . 6  |-  (Rng  i^i  U )  =  ( U  i^i Rng )
42 inex1g 4801 . . . . . 6  |-  ( U  e.  V  ->  ( U  i^i Rng )  e.  _V )
4341, 42syl5eqel 2705 . . . . 5  |-  ( U  e.  V  ->  (Rng  i^i  U )  e.  _V )
4440, 43syl 17 . . . 4  |-  ( ph  ->  (Rng  i^i  U )  e.  _V )
457, 44eqeltrd 2701 . . 3  |-  ( ph  ->  S  e.  _V )
4631, 39, 45isssc 16480 . 2  |-  ( ph  ->  ( ( RingHom  |`  ( R  X.  R ) ) 
C_cat  ( RngHomo  |`  ( S  X.  S ) )  <->  ( R  C_  S  /\  A. x  e.  R  A. y  e.  R  ( x
( RingHom  |`  ( R  X.  R ) ) y )  C_  ( x
( RngHomo  |`  ( S  X.  S ) ) y ) ) ) )
478, 23, 46mpbir2and 957 1  |-  ( ph  ->  ( RingHom  |`  ( R  X.  R ) )  C_cat  ( RngHomo  |`  ( S  X.  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112    |` cres 5116    Fn wfn 5883  (class class class)co 6650    C_cat cssc 16467   Ringcrg 18547   RingHom crh 18712  Rngcrng 41874   RngHomo crngh 41885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-ssc 16470  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715  df-mgmhm 41779  df-rng0 41875  df-rnghomo 41887
This theorem is referenced by:  rhmsubcrngc  42029  rhmsubc  42090  rhmsubcALTV  42108
  Copyright terms: Public domain W3C validator