MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitmulcl Structured version   Visualization version   Unicode version

Theorem unitmulcl 18664
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitmulcl.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
unitmulcl  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e.  Ring )
2 simp3 1063 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  U )
3 eqid 2622 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
4 unitmulcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
53, 4unitcl 18659 . . . . . 6  |-  ( Y  e.  U  ->  Y  e.  ( Base `  R
) )
62, 5syl 17 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  ( Base `  R
) )
7 simp2 1062 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  U )
8 eqid 2622 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
9 eqid 2622 . . . . . . . 8  |-  ( ||r `  R
)  =  ( ||r `  R
)
10 eqid 2622 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
11 eqid 2622 . . . . . . . 8  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
124, 8, 9, 10, 11isunit 18657 . . . . . . 7  |-  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
137, 12sylib 208 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
1413simpld 475 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
15 unitmulcl.2 . . . . . 6  |-  .x.  =  ( .r `  R )
163, 9, 15dvdsrmul1 18653 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  X ( ||r `  R ) ( 1r
`  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( ( 1r
`  R )  .x.  Y ) )
171, 6, 14, 16syl3anc 1326 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( ( 1r `  R ) 
.x.  Y ) )
183, 15, 8ringlidm 18571 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
) )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
191, 6, 18syl2anc 693 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
2017, 19breqtrd 4679 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) Y )
214, 8, 9, 10, 11isunit 18657 . . . . 5  |-  ( Y  e.  U  <->  ( Y
( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
222, 21sylib 208 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2322simpld 475 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 R ) ( 1r `  R ) )
243, 9dvdsrtr 18652 . . 3  |-  ( ( R  e.  Ring  /\  ( X  .x.  Y ) (
||r `  R ) Y  /\  Y ( ||r `
 R ) ( 1r `  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( 1r `  R ) )
251, 20, 23, 24syl3anc 1326 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R ) )
2610opprring 18631 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
271, 26syl 17 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  e.  Ring )
28 eqid 2622 . . . . 5  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
293, 15, 10, 28opprmul 18626 . . . 4  |-  ( Y ( .r `  (oppr `  R
) ) X )  =  ( X  .x.  Y )
303, 4unitcl 18659 . . . . . . 7  |-  ( X  e.  U  ->  X  e.  ( Base `  R
) )
317, 30syl 17 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  R
) )
3222simprd 479 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
3310, 3opprbas 18629 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
3433, 11, 28dvdsrmul1 18653 . . . . . 6  |-  ( ( (oppr
`  R )  e. 
Ring  /\  X  e.  (
Base `  R )  /\  Y ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( Y ( .r `  (oppr `  R ) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
3527, 31, 32, 34syl3anc 1326 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
363, 15, 10, 28opprmul 18626 . . . . . 6  |-  ( ( 1r `  R ) ( .r `  (oppr `  R
) ) X )  =  ( X  .x.  ( 1r `  R ) )
373, 15, 8ringridm 18572 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
) )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
381, 31, 37syl2anc 693 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
3936, 38syl5eq 2668 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  X )
4035, 39breqtrd 4679 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X ) ( ||r `
 (oppr
`  R ) ) X )
4129, 40syl5eqbrr 4689 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) X )
4213simprd 479 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4333, 11dvdsrtr 18652 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( X  .x.  Y ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
4427, 41, 42, 43syl3anc 1326 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
454, 8, 9, 10, 11isunit 18657 . 2  |-  ( ( X  .x.  Y )  e.  U  <->  ( ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R )  /\  ( X  .x.  Y ) ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) )
4625, 44, 45sylanbrc 698 1  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   1rcur 18501   Ringcrg 18547  opprcoppr 18622   ||rcdsr 18638  Unitcui 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642
This theorem is referenced by:  unitmulclb  18665  unitgrp  18667  unitdvcl  18687  irredrmul  18707  subrgugrp  18799  dchrelbasd  24964  dchrptlem2  24990  rdivmuldivd  29791  dvrcan5  29793  qqhghm  30032  qqhrhm  30033
  Copyright terms: Public domain W3C validator