MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrguss Structured version   Visualization version   Unicode version

Theorem subrguss 18795
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1  |-  S  =  ( Rs  A )
subrguss.2  |-  U  =  (Unit `  R )
subrguss.3  |-  V  =  (Unit `  S )
Assertion
Ref Expression
subrguss  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)

Proof of Theorem subrguss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  V )
2 subrguss.3 . . . . . . . . 9  |-  V  =  (Unit `  S )
3 eqid 2622 . . . . . . . . 9  |-  ( 1r
`  S )  =  ( 1r `  S
)
4 eqid 2622 . . . . . . . . 9  |-  ( ||r `  S
)  =  ( ||r `  S
)
5 eqid 2622 . . . . . . . . 9  |-  (oppr `  S
)  =  (oppr `  S
)
6 eqid 2622 . . . . . . . . 9  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
72, 3, 4, 5, 6isunit 18657 . . . . . . . 8  |-  ( x  e.  V  <->  ( x
( ||r `
 S ) ( 1r `  S )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) )
81, 7sylib 208 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( ||r `
 S ) ( 1r `  S )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) )
98simpld 475 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  S ) )
10 subrguss.1 . . . . . . . 8  |-  S  =  ( Rs  A )
11 eqid 2622 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
1210, 11subrg1 18790 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
1312adantr 481 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( 1r `  R )  =  ( 1r `  S
) )
149, 13breqtrrd 4681 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  R ) )
15 eqid 2622 . . . . . . . 8  |-  ( ||r `  R
)  =  ( ||r `  R
)
1610, 15, 4subrgdvds 18794 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  C_  ( ||r `  R
) )
1716adantr 481 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  S )  C_  ( ||r `  R ) )
1817ssbrd 4696 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( ||r `
 S ) ( 1r `  R )  ->  x ( ||r `  R
) ( 1r `  R ) ) )
1914, 18mpd 15 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 R ) ( 1r `  R ) )
2010subrgbas 18789 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
2120adantr 481 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  =  ( Base `  S
) )
22 eqid 2622 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
2322subrgss 18781 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
2423adantr 481 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  C_  ( Base `  R
) )
2521, 24eqsstr3d 3640 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  C_  ( Base `  R )
)
26 eqid 2622 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
2726, 2unitcl 18659 . . . . . . . 8  |-  ( x  e.  V  ->  x  e.  ( Base `  S
) )
2827adantl 482 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  S
) )
2925, 28sseldd 3604 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  R
) )
3010subrgring 18783 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
31 eqid 2622 . . . . . . . . 9  |-  ( invr `  S )  =  (
invr `  S )
322, 31, 26ringinvcl 18676 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
3330, 32sylan 488 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
3425, 33sseldd 3604 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  R )
)
35 eqid 2622 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
3635, 22opprbas 18629 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
37 eqid 2622 . . . . . . 7  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
38 eqid 2622 . . . . . . 7  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
3936, 37, 38dvdsrmul 18648 . . . . . 6  |-  ( ( x  e.  ( Base `  R )  /\  (
( invr `  S ) `  x )  e.  (
Base `  R )
)  ->  x ( ||r `  (oppr
`  R ) ) ( ( ( invr `  S ) `  x
) ( .r `  (oppr `  R ) ) x ) )
4029, 34, 39syl2anc 693 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( ( ( invr `  S ) `  x
) ( .r `  (oppr `  R ) ) x ) )
41 eqid 2622 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
4222, 41, 35, 38opprmul 18626 . . . . . 6  |-  ( ( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( x ( .r `  R ) ( ( invr `  S
) `  x )
)
43 eqid 2622 . . . . . . . . 9  |-  ( .r
`  S )  =  ( .r `  S
)
442, 31, 43, 3unitrinv 18678 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
4530, 44sylan 488 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
4610, 41ressmulr 16006 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
4746adantr 481 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  R )  =  ( .r `  S
) )
4847oveqd 6667 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( x ( .r
`  S ) ( ( invr `  S
) `  x )
) )
4945, 48, 133eqtr4d 2666 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( 1r `  R
) )
5042, 49syl5eq 2668 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) )
5140, 50breqtrd 4679 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
52 subrguss.2 . . . . 5  |-  U  =  (Unit `  R )
5352, 11, 15, 35, 37isunit 18657 . . . 4  |-  ( x  e.  U  <->  ( x
( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
5419, 51, 53sylanbrc 698 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  U )
5554ex 450 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  ->  x  e.  U ) )
5655ssrdv 3609 1  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   .rcmulr 15942   1rcur 18501   Ringcrg 18547  opprcoppr 18622   ||rcdsr 18638  Unitcui 18639   invrcinvr 18671  SubRingcsubrg 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-subrg 18778
This theorem is referenced by:  subrginv  18796  subrgdv  18797  subrgunit  18798  subrgugrp  18799  issubdrg  18805  zringunit  19836
  Copyright terms: Public domain W3C validator