MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrng2 Structured version   Visualization version   Unicode version

Theorem isdrng2 18757
Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng2.b  |-  B  =  ( Base `  R
)
isdrng2.z  |-  .0.  =  ( 0g `  R )
isdrng2.g  |-  G  =  ( (mulGrp `  R
)s  ( B  \  {  .0.  } ) )
Assertion
Ref Expression
isdrng2  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  G  e.  Grp )
)

Proof of Theorem isdrng2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isdrng2.b . . 3  |-  B  =  ( Base `  R
)
2 eqid 2622 . . 3  |-  (Unit `  R )  =  (Unit `  R )
3 isdrng2.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3isdrng 18751 . 2  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  {  .0.  } ) ) )
5 oveq2 6658 . . . . . . 7  |-  ( (Unit `  R )  =  ( B  \  {  .0.  } )  ->  ( (mulGrp `  R )s  (Unit `  R )
)  =  ( (mulGrp `  R )s  ( B  \  {  .0.  } ) ) )
65adantl 482 . . . . . 6  |-  ( ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  {  .0.  } ) )  ->  (
(mulGrp `  R )s  (Unit `  R ) )  =  ( (mulGrp `  R
)s  ( B  \  {  .0.  } ) ) )
7 isdrng2.g . . . . . 6  |-  G  =  ( (mulGrp `  R
)s  ( B  \  {  .0.  } ) )
86, 7syl6eqr 2674 . . . . 5  |-  ( ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  {  .0.  } ) )  ->  (
(mulGrp `  R )s  (Unit `  R ) )  =  G )
9 eqid 2622 . . . . . . 7  |-  ( (mulGrp `  R )s  (Unit `  R )
)  =  ( (mulGrp `  R )s  (Unit `  R )
)
102, 9unitgrp 18667 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  (Unit `  R )
)  e.  Grp )
1110adantr 481 . . . . 5  |-  ( ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  {  .0.  } ) )  ->  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
Grp )
128, 11eqeltrrd 2702 . . . 4  |-  ( ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  {  .0.  } ) )  ->  G  e.  Grp )
131, 2unitcl 18659 . . . . . . . . 9  |-  ( x  e.  (Unit `  R
)  ->  x  e.  B )
1413adantl 482 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  ->  x  e.  B )
15 difss 3737 . . . . . . . . . . . . . . 15  |-  ( B 
\  {  .0.  }
)  C_  B
16 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  (mulGrp `  R )  =  (mulGrp `  R )
1716, 1mgpbas 18495 . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  (mulGrp `  R ) )
187, 17ressbas2 15931 . . . . . . . . . . . . . . 15  |-  ( ( B  \  {  .0.  } )  C_  B  ->  ( B  \  {  .0.  } )  =  ( Base `  G ) )
1915, 18ax-mp 5 . . . . . . . . . . . . . 14  |-  ( B 
\  {  .0.  }
)  =  ( Base `  G )
20 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  =  ( 0g `  G
)
2119, 20grpidcl 17450 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( B  \  {  .0.  } ) )
2221ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  -> 
( 0g `  G
)  e.  ( B 
\  {  .0.  }
) )
23 eldifsn 4317 . . . . . . . . . . . 12  |-  ( ( 0g `  G )  e.  ( B  \  {  .0.  } )  <->  ( ( 0g `  G )  e.  B  /\  ( 0g
`  G )  =/= 
.0.  ) )
2422, 23sylib 208 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  -> 
( ( 0g `  G )  e.  B  /\  ( 0g `  G
)  =/=  .0.  )
)
2524simprd 479 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  -> 
( 0g `  G
)  =/=  .0.  )
26 simpll 790 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  ->  R  e.  Ring )
2722eldifad 3586 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  -> 
( 0g `  G
)  e.  B )
28 simpr 477 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  ->  x  e.  (Unit `  R
) )
29 eqid 2622 . . . . . . . . . . . 12  |-  (/r `  R
)  =  (/r `  R
)
30 eqid 2622 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
311, 2, 29, 30dvrcan1 18691 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  ( 0g `  G )  e.  B  /\  x  e.  (Unit `  R )
)  ->  ( (
( 0g `  G
) (/r `  R ) x ) ( .r `  R ) x )  =  ( 0g `  G ) )
3226, 27, 28, 31syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  -> 
( ( ( 0g
`  G ) (/r `  R ) x ) ( .r `  R
) x )  =  ( 0g `  G
) )
331, 2, 29dvrcl 18686 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  ( 0g `  G )  e.  B  /\  x  e.  (Unit `  R )
)  ->  ( ( 0g `  G ) (/r `  R ) x )  e.  B )
3426, 27, 28, 33syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  -> 
( ( 0g `  G ) (/r `  R
) x )  e.  B )
351, 30, 3ringrz 18588 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
( 0g `  G
) (/r `  R ) x )  e.  B )  ->  ( ( ( 0g `  G ) (/r `  R ) x ) ( .r `  R )  .0.  )  =  .0.  )
3626, 34, 35syl2anc 693 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  -> 
( ( ( 0g
`  G ) (/r `  R ) x ) ( .r `  R
)  .0.  )  =  .0.  )
3725, 32, 363netr4d 2871 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  -> 
( ( ( 0g
`  G ) (/r `  R ) x ) ( .r `  R
) x )  =/=  ( ( ( 0g
`  G ) (/r `  R ) x ) ( .r `  R
)  .0.  ) )
38 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  .0.  ->  (
( ( 0g `  G ) (/r `  R
) x ) ( .r `  R ) x )  =  ( ( ( 0g `  G ) (/r `  R
) x ) ( .r `  R )  .0.  ) )
3938necon3i 2826 . . . . . . . . 9  |-  ( ( ( ( 0g `  G ) (/r `  R
) x ) ( .r `  R ) x )  =/=  (
( ( 0g `  G ) (/r `  R
) x ) ( .r `  R )  .0.  )  ->  x  =/=  .0.  )
4037, 39syl 17 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  ->  x  =/=  .0.  )
41 eldifsn 4317 . . . . . . . 8  |-  ( x  e.  ( B  \  {  .0.  } )  <->  ( x  e.  B  /\  x  =/=  .0.  ) )
4214, 40, 41sylanbrc 698 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  (Unit `  R ) )  ->  x  e.  ( B  \  {  .0.  } ) )
4342ex 450 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  (
x  e.  (Unit `  R )  ->  x  e.  ( B  \  {  .0.  } ) ) )
4443ssrdv 3609 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  (Unit `  R )  C_  ( B  \  {  .0.  }
) )
45 eldifi 3732 . . . . . . . . . . 11  |-  ( x  e.  ( B  \  {  .0.  } )  ->  x  e.  B )
4645adantl 482 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  x  e.  B )
47 eqid 2622 . . . . . . . . . . . . 13  |-  ( invg `  G )  =  ( invg `  G )
4819, 47grpinvcl 17467 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  ( B  \  {  .0.  } ) )  ->  ( ( invg `  G ) `
 x )  e.  ( B  \  {  .0.  } ) )
4948adantll 750 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  (
( invg `  G ) `  x
)  e.  ( B 
\  {  .0.  }
) )
5049eldifad 3586 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  (
( invg `  G ) `  x
)  e.  B )
51 eqid 2622 . . . . . . . . . . 11  |-  ( ||r `  R
)  =  ( ||r `  R
)
521, 51, 30dvdsrmul 18648 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  ( ( invg `  G ) `  x
)  e.  B )  ->  x ( ||r `  R
) ( ( ( invg `  G
) `  x )
( .r `  R
) x ) )
5346, 50, 52syl2anc 693 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  x
( ||r `
 R ) ( ( ( invg `  G ) `  x
) ( .r `  R ) x ) )
54 fvex 6201 . . . . . . . . . . . . . 14  |-  ( Base `  R )  e.  _V
551, 54eqeltri 2697 . . . . . . . . . . . . 13  |-  B  e. 
_V
56 difexg 4808 . . . . . . . . . . . . 13  |-  ( B  e.  _V  ->  ( B  \  {  .0.  }
)  e.  _V )
5716, 30mgpplusg 18493 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) )
587, 57ressplusg 15993 . . . . . . . . . . . . 13  |-  ( ( B  \  {  .0.  } )  e.  _V  ->  ( .r `  R )  =  ( +g  `  G
) )
5955, 56, 58mp2b 10 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( +g  `  G
)
6019, 59, 20, 47grplinv 17468 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  x  e.  ( B  \  {  .0.  } ) )  ->  ( (
( invg `  G ) `  x
) ( .r `  R ) x )  =  ( 0g `  G ) )
6160adantll 750 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  (
( ( invg `  G ) `  x
) ( .r `  R ) x )  =  ( 0g `  G ) )
62 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( 1r
`  R )  =  ( 1r `  R
)
631, 62ringidcl 18568 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
641, 30, 62ringlidm 18571 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( 1r
`  R ) )  =  ( 1r `  R ) )
6563, 64mpdan 702 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  ( ( 1r `  R ) ( .r `  R
) ( 1r `  R ) )  =  ( 1r `  R
) )
6665adantr 481 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  (
( 1r `  R
) ( .r `  R ) ( 1r
`  R ) )  =  ( 1r `  R ) )
67 simpr 477 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  G  e.  Grp )
682, 621unit 18658 . . . . . . . . . . . . . . 15  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  (Unit `  R )
)
6968adantr 481 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  ( 1r `  R )  e.  (Unit `  R )
)
7044, 69sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) )
7119, 59, 20grpid 17457 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( 1r `  R )  e.  ( B  \  {  .0.  } ) )  ->  ( ( ( 1r `  R ) ( .r `  R
) ( 1r `  R ) )  =  ( 1r `  R
)  <->  ( 0g `  G )  =  ( 1r `  R ) ) )
7267, 70, 71syl2anc 693 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  (
( ( 1r `  R ) ( .r
`  R ) ( 1r `  R ) )  =  ( 1r
`  R )  <->  ( 0g `  G )  =  ( 1r `  R ) ) )
7366, 72mpbid 222 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  ( 0g `  G )  =  ( 1r `  R
) )
7473adantr 481 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  ( 0g `  G )  =  ( 1r `  R
) )
7561, 74eqtrd 2656 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  (
( ( invg `  G ) `  x
) ( .r `  R ) x )  =  ( 1r `  R ) )
7653, 75breqtrd 4679 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  x
( ||r `
 R ) ( 1r `  R ) )
77 eqid 2622 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
7877, 1opprbas 18629 . . . . . . . . . . 11  |-  B  =  ( Base `  (oppr `  R
) )
79 eqid 2622 . . . . . . . . . . 11  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
80 eqid 2622 . . . . . . . . . . 11  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
8178, 79, 80dvdsrmul 18648 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  ( ( invg `  G ) `  x
)  e.  B )  ->  x ( ||r `  (oppr `  R
) ) ( ( ( invg `  G ) `  x
) ( .r `  (oppr `  R ) ) x ) )
8246, 50, 81syl2anc 693 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  x
( ||r `
 (oppr
`  R ) ) ( ( ( invg `  G ) `
 x ) ( .r `  (oppr `  R
) ) x ) )
831, 30, 77, 80opprmul 18626 . . . . . . . . . 10  |-  ( ( ( invg `  G ) `  x
) ( .r `  (oppr `  R ) ) x )  =  ( x ( .r `  R
) ( ( invg `  G ) `
 x ) )
8419, 59, 20, 47grprinv 17469 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  ( B  \  {  .0.  } ) )  ->  ( x
( .r `  R
) ( ( invg `  G ) `
 x ) )  =  ( 0g `  G ) )
8584adantll 750 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  (
x ( .r `  R ) ( ( invg `  G
) `  x )
)  =  ( 0g
`  G ) )
8685, 74eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  (
x ( .r `  R ) ( ( invg `  G
) `  x )
)  =  ( 1r
`  R ) )
8783, 86syl5eq 2668 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  (
( ( invg `  G ) `  x
) ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) )
8882, 87breqtrd 4679 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
892, 62, 51, 77, 79isunit 18657 . . . . . . . 8  |-  ( x  e.  (Unit `  R
)  <->  ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) )
9076, 88, 89sylanbrc 698 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  G  e.  Grp )  /\  x  e.  ( B  \  {  .0.  }
) )  ->  x  e.  (Unit `  R )
)
9190ex 450 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  (
x  e.  ( B 
\  {  .0.  }
)  ->  x  e.  (Unit `  R ) ) )
9291ssrdv 3609 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  ( B  \  {  .0.  }
)  C_  (Unit `  R
) )
9344, 92eqssd 3620 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  Grp )  ->  (Unit `  R )  =  ( B  \  {  .0.  } ) )
9412, 93impbida 877 . . 3  |-  ( R  e.  Ring  ->  ( (Unit `  R )  =  ( B  \  {  .0.  } )  <->  G  e.  Grp ) )
9594pm5.32i 669 . 2  |-  ( ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  {  .0.  } ) )  <->  ( R  e.  Ring  /\  G  e.  Grp ) )
964, 95bitri 264 1  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  G  e.  Grp )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547  opprcoppr 18622   ||rcdsr 18638  Unitcui 18639  /rcdvr 18682   DivRingcdr 18747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749
This theorem is referenced by:  drngmgp  18759  isdrngd  18772
  Copyright terms: Public domain W3C validator