MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksn Structured version   Visualization version   Unicode version

Theorem iswwlksn 26730
Description: A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
iswwlksn  |-  ( N  e.  NN0  ->  ( W  e.  ( N WWalksN  G
)  <->  ( W  e.  (WWalks `  G )  /\  ( # `  W
)  =  ( N  +  1 ) ) ) )

Proof of Theorem iswwlksn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 wwlksn 26729 . . 3  |-  ( N  e.  NN0  ->  ( N WWalksN  G )  =  {
w  e.  (WWalks `  G )  |  (
# `  w )  =  ( N  + 
1 ) } )
21eleq2d 2687 . 2  |-  ( N  e.  NN0  ->  ( W  e.  ( N WWalksN  G
)  <->  W  e.  { w  e.  (WWalks `  G )  |  ( # `  w
)  =  ( N  +  1 ) } ) )
3 fveq2 6191 . . . 4  |-  ( w  =  W  ->  ( # `
 w )  =  ( # `  W
) )
43eqeq1d 2624 . . 3  |-  ( w  =  W  ->  (
( # `  w )  =  ( N  + 
1 )  <->  ( # `  W
)  =  ( N  +  1 ) ) )
54elrab 3363 . 2  |-  ( W  e.  { w  e.  (WWalks `  G )  |  ( # `  w
)  =  ( N  +  1 ) }  <-> 
( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( N  +  1 ) ) )
62, 5syl6bb 276 1  |-  ( N  e.  NN0  ->  ( W  e.  ( N WWalksN  G
)  <->  ( W  e.  (WWalks `  G )  /\  ( # `  W
)  =  ( N  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   NN0cn0 11292   #chash 13117  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wwlksn 26723
This theorem is referenced by:  iswwlksnx  26731  wwlknbp  26733  wwlknp  26734  wwlkswwlksn  26750  wlklnwwlkln1  26754  wlklnwwlkln2lem  26768  wlknewwlksn  26773  wwlksnred  26787  wwlksnext  26788  wwlksnextproplem3  26806  wspthsnonn0vne  26813  elwspths2spth  26862  rusgrnumwwlkl1  26863  clwwlksel  26914  clwwlksf  26915
  Copyright terms: Public domain W3C validator