MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln2lem Structured version   Visualization version   Unicode version

Theorem wlklnwwlkln2lem 26768
Description: Lemma for wlklnwwlkln2 26769 and wlklnwwlklnupgr2 26771. Formerly part of proof for wlklnwwlkln2 26769. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Hypothesis
Ref Expression
wlklnwwlkln2lem.1  |-  ( ph  ->  ( P  e.  (WWalks `  G )  ->  E. f 
f (Walks `  G
) P ) )
Assertion
Ref Expression
wlklnwwlkln2lem  |-  ( ph  ->  ( P  e.  ( N WWalksN  G )  ->  E. f
( f (Walks `  G ) P  /\  ( # `  f )  =  N ) ) )
Distinct variable groups:    f, G    f, N    P, f    ph, f

Proof of Theorem wlklnwwlkln2lem
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
21wwlknbp 26733 . . 3  |-  ( P  e.  ( N WWalksN  G
)  ->  ( G  e.  _V  /\  N  e. 
NN0  /\  P  e. Word  (Vtx
`  G ) ) )
3 iswwlksn 26730 . . . . . 6  |-  ( N  e.  NN0  ->  ( P  e.  ( N WWalksN  G
)  <->  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) ) )
43adantr 481 . . . . 5  |-  ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G
) )  ->  ( P  e.  ( N WWalksN  G )  <->  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) ) )
5 lencl 13324 . . . . . . . . . . . . . 14  |-  ( P  e. Word  (Vtx `  G
)  ->  ( # `  P
)  e.  NN0 )
65nn0cnd 11353 . . . . . . . . . . . . 13  |-  ( P  e. Word  (Vtx `  G
)  ->  ( # `  P
)  e.  CC )
76adantl 482 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G
) )  ->  ( # `
 P )  e.  CC )
8 1cnd 10056 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G
) )  ->  1  e.  CC )
9 nn0cn 11302 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  CC )
109adantr 481 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G
) )  ->  N  e.  CC )
117, 8, 10subadd2d 10411 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G
) )  ->  (
( ( # `  P
)  -  1 )  =  N  <->  ( N  +  1 )  =  ( # `  P
) ) )
12 eqcom 2629 . . . . . . . . . . 11  |-  ( ( N  +  1 )  =  ( # `  P
)  <->  ( # `  P
)  =  ( N  +  1 ) )
1311, 12syl6rbb 277 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G
) )  ->  (
( # `  P )  =  ( N  + 
1 )  <->  ( ( # `
 P )  - 
1 )  =  N ) )
1413biimpcd 239 . . . . . . . . 9  |-  ( (
# `  P )  =  ( N  + 
1 )  ->  (
( N  e.  NN0  /\  P  e. Word  (Vtx `  G ) )  -> 
( ( # `  P
)  -  1 )  =  N ) )
1514adantl 482 . . . . . . . 8  |-  ( ( P  e.  (WWalks `  G )  /\  ( # `
 P )  =  ( N  +  1 ) )  ->  (
( N  e.  NN0  /\  P  e. Word  (Vtx `  G ) )  -> 
( ( # `  P
)  -  1 )  =  N ) )
1615impcom 446 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G ) )  /\  ( P  e.  (WWalks `  G )  /\  ( # `
 P )  =  ( N  +  1 ) ) )  -> 
( ( # `  P
)  -  1 )  =  N )
17 wlklnwwlkln2lem.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  e.  (WWalks `  G )  ->  E. f 
f (Walks `  G
) P ) )
1817com12 32 . . . . . . . . . . . . 13  |-  ( P  e.  (WWalks `  G
)  ->  ( ph  ->  E. f  f (Walks `  G ) P ) )
1918adantr 481 . . . . . . . . . . . 12  |-  ( ( P  e.  (WWalks `  G )  /\  ( # `
 P )  =  ( N  +  1 ) )  ->  ( ph  ->  E. f  f (Walks `  G ) P ) )
2019adantl 482 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G ) )  /\  ( P  e.  (WWalks `  G )  /\  ( # `
 P )  =  ( N  +  1 ) ) )  -> 
( ph  ->  E. f 
f (Walks `  G
) P ) )
2120imp 445 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) )  /\  ph )  ->  E. f  f (Walks `  G ) P )
22 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN0  /\  P  e. Word 
(Vtx `  G )
)  /\  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) )  /\  ph )  /\  f (Walks `  G
) P )  -> 
f (Walks `  G
) P )
23 wlklenvm1 26517 . . . . . . . . . . . . 13  |-  ( f (Walks `  G ) P  ->  ( # `  f
)  =  ( (
# `  P )  -  1 ) )
2422, 23jccir 562 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN0  /\  P  e. Word 
(Vtx `  G )
)  /\  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) )  /\  ph )  /\  f (Walks `  G
) P )  -> 
( f (Walks `  G ) P  /\  ( # `  f )  =  ( ( # `  P )  -  1 ) ) )
2524ex 450 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) )  /\  ph )  ->  ( f (Walks `  G ) P  -> 
( f (Walks `  G ) P  /\  ( # `  f )  =  ( ( # `  P )  -  1 ) ) ) )
2625eximdv 1846 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) )  /\  ph )  ->  ( E. f  f (Walks `  G ) P  ->  E. f ( f (Walks `  G ) P  /\  ( # `  f
)  =  ( (
# `  P )  -  1 ) ) ) )
2721, 26mpd 15 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) )  /\  ph )  ->  E. f ( f (Walks `  G ) P  /\  ( # `  f
)  =  ( (
# `  P )  -  1 ) ) )
28 eqeq2 2633 . . . . . . . . . . 11  |-  ( ( ( # `  P
)  -  1 )  =  N  ->  (
( # `  f )  =  ( ( # `  P )  -  1 )  <->  ( # `  f
)  =  N ) )
2928anbi2d 740 . . . . . . . . . 10  |-  ( ( ( # `  P
)  -  1 )  =  N  ->  (
( f (Walks `  G ) P  /\  ( # `  f )  =  ( ( # `  P )  -  1 ) )  <->  ( f
(Walks `  G ) P  /\  ( # `  f
)  =  N ) ) )
3029exbidv 1850 . . . . . . . . 9  |-  ( ( ( # `  P
)  -  1 )  =  N  ->  ( E. f ( f (Walks `  G ) P  /\  ( # `  f )  =  ( ( # `  P )  -  1 ) )  <->  E. f
( f (Walks `  G ) P  /\  ( # `  f )  =  N ) ) )
3127, 30syl5ib 234 . . . . . . . 8  |-  ( ( ( # `  P
)  -  1 )  =  N  ->  (
( ( ( N  e.  NN0  /\  P  e. Word 
(Vtx `  G )
)  /\  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) )  /\  ph )  ->  E. f ( f (Walks `  G ) P  /\  ( # `  f
)  =  N ) ) )
3231expd 452 . . . . . . 7  |-  ( ( ( # `  P
)  -  1 )  =  N  ->  (
( ( N  e. 
NN0  /\  P  e. Word  (Vtx
`  G ) )  /\  ( P  e.  (WWalks `  G )  /\  ( # `  P
)  =  ( N  +  1 ) ) )  ->  ( ph  ->  E. f ( f (Walks `  G ) P  /\  ( # `  f
)  =  N ) ) ) )
3316, 32mpcom 38 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G ) )  /\  ( P  e.  (WWalks `  G )  /\  ( # `
 P )  =  ( N  +  1 ) ) )  -> 
( ph  ->  E. f
( f (Walks `  G ) P  /\  ( # `  f )  =  N ) ) )
3433ex 450 . . . . 5  |-  ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G
) )  ->  (
( P  e.  (WWalks `  G )  /\  ( # `
 P )  =  ( N  +  1 ) )  ->  ( ph  ->  E. f ( f (Walks `  G ) P  /\  ( # `  f
)  =  N ) ) ) )
354, 34sylbid 230 . . . 4  |-  ( ( N  e.  NN0  /\  P  e. Word  (Vtx `  G
) )  ->  ( P  e.  ( N WWalksN  G )  ->  ( ph  ->  E. f ( f (Walks `  G ) P  /\  ( # `  f
)  =  N ) ) ) )
36353adant1 1079 . . 3  |-  ( ( G  e.  _V  /\  N  e.  NN0  /\  P  e. Word  (Vtx `  G )
)  ->  ( P  e.  ( N WWalksN  G )  ->  ( ph  ->  E. f
( f (Walks `  G ) P  /\  ( # `  f )  =  N ) ) ) )
372, 36mpcom 38 . 2  |-  ( P  e.  ( N WWalksN  G
)  ->  ( ph  ->  E. f ( f (Walks `  G ) P  /\  ( # `  f
)  =  N ) ) )
3837com12 32 1  |-  ( ph  ->  ( P  e.  ( N WWalksN  G )  ->  E. f
( f (Walks `  G ) P  /\  ( # `  f )  =  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292   #chash 13117  Word cword 13291  Vtxcvtx 25874  Walkscwlks 26492  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wlklnwwlkln2  26769  wlklnwwlklnupgr2  26771
  Copyright terms: Public domain W3C validator