MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksel Structured version   Visualization version   Unicode version

Theorem clwwlksel 26914
Description: Obtaining a closed walk (as word) by appending the first symbol to the word representing a walk. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Hypothesis
Ref Expression
clwwlksbij.d  |-  D  =  { w  e.  ( N WWalksN  G )  |  ( lastS  `  w )  =  ( w `  0 ) }
Assertion
Ref Expression
clwwlksel  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( P ++  <" ( P `  0
) "> )  e.  D )
Distinct variable groups:    i, G    w, G    i, N    w, N    P, i    w, P
Allowed substitution hints:    D( w, i)

Proof of Theorem clwwlksel
StepHypRef Expression
1 simprl 794 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  ->  P  e. Word  (Vtx `  G
) )
2 fstwrdne0 13345 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( P `  0
)  e.  (Vtx `  G ) )
3 ccatws1n0 13409 . . . . . 6  |-  ( ( P  e. Word  (Vtx `  G )  /\  ( P `  0 )  e.  (Vtx `  G )
)  ->  ( P ++  <" ( P ` 
0 ) "> )  =/=  (/) )
41, 2, 3syl2anc 693 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( P ++  <" ( P `  0 ) "> )  =/=  (/) )
543adant3 1081 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( P ++  <" ( P `  0
) "> )  =/=  (/) )
6 simp2l 1087 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  P  e. Word  (Vtx `  G ) )
72s1cld 13383 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  ->  <" ( P ` 
0 ) ">  e. Word  (Vtx `  G )
)
873adant3 1081 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  <" ( P `
 0 ) ">  e. Word  (Vtx `  G
) )
9 ccatcl 13359 . . . . 5  |-  ( ( P  e. Word  (Vtx `  G )  /\  <" ( P `  0
) ">  e. Word  (Vtx
`  G ) )  ->  ( P ++  <" ( P `  0
) "> )  e. Word  (Vtx `  G )
)
106, 8, 9syl2anc 693 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( P ++  <" ( P `  0
) "> )  e. Word  (Vtx `  G )
)
111adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  P  e. Word  (Vtx `  G
) )
127adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  <" ( P ` 
0 ) ">  e. Word  (Vtx `  G )
)
13 elfzonn0 12512 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 0..^ ( N  -  1 ) )  ->  i  e.  NN0 )
1413adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
i  e.  NN0 )
15 nnz 11399 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  ZZ )
1615adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  N  e.  ZZ )
17 elfzo0 12508 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ ( N  -  1 ) )  <->  ( i  e. 
NN0  /\  ( N  -  1 )  e.  NN  /\  i  < 
( N  -  1 ) ) )
18 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( i  e.  NN0  ->  i  e.  RR )
1918adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( i  e.  NN0  /\  N  e.  NN )  ->  i  e.  RR )
20 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN  ->  N  e.  RR )
21 peano2rem 10348 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
2322adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( i  e.  NN0  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
2420adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( i  e.  NN0  /\  N  e.  NN )  ->  N  e.  RR )
2519, 23, 243jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( i  e.  NN0  /\  N  e.  NN )  ->  ( i  e.  RR  /\  ( N  -  1 )  e.  RR  /\  N  e.  RR )
)
2625adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( i  e.  NN0  /\  N  e.  NN )  /\  i  <  ( N  -  1 ) )  ->  ( i  e.  RR  /\  ( N  -  1 )  e.  RR  /\  N  e.  RR ) )
27 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( i  e.  NN0  /\  N  e.  NN )  /\  i  <  ( N  -  1 ) )  ->  i  <  ( N  -  1 ) )
2820ltm1d 10956 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  ( N  -  1 )  <  N )
2928adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( i  e.  NN0  /\  N  e.  NN )  ->  ( N  -  1 )  <  N )
3029adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( i  e.  NN0  /\  N  e.  NN )  /\  i  <  ( N  -  1 ) )  ->  ( N  -  1 )  < 
N )
31 lttr 10114 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( i  e.  RR  /\  ( N  -  1
)  e.  RR  /\  N  e.  RR )  ->  ( ( i  < 
( N  -  1 )  /\  ( N  -  1 )  < 
N )  ->  i  <  N ) )
3231imp 445 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( i  e.  RR  /\  ( N  -  1 )  e.  RR  /\  N  e.  RR )  /\  ( i  <  ( N  -  1 )  /\  ( N  - 
1 )  <  N
) )  ->  i  <  N )
3326, 27, 30, 32syl12anc 1324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( i  e.  NN0  /\  N  e.  NN )  /\  i  <  ( N  -  1 ) )  ->  i  <  N )
3433ex 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( i  e.  NN0  /\  N  e.  NN )  ->  ( i  <  ( N  -  1 )  ->  i  <  N
) )
3534impancom 456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  e.  NN0  /\  i  <  ( N  - 
1 ) )  -> 
( N  e.  NN  ->  i  <  N ) )
36353adant2 1080 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  NN0  /\  ( N  -  1
)  e.  NN  /\  i  <  ( N  - 
1 ) )  -> 
( N  e.  NN  ->  i  <  N ) )
3717, 36sylbi 207 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 0..^ ( N  -  1 ) )  ->  ( N  e.  NN  ->  i  <  N ) )
3837impcom 446 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
i  <  N )
39 elfzo0z 12509 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 0..^ N )  <->  ( i  e. 
NN0  /\  N  e.  ZZ  /\  i  <  N
) )
4014, 16, 38, 39syl3anbrc 1246 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
i  e.  ( 0..^ N ) )
4140adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
i  e.  ( 0..^ N ) )
42 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  P )  =  N  ->  ( 0..^ ( # `  P
) )  =  ( 0..^ N ) )
4342eleq2d 2687 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  P )  =  N  ->  ( i  e.  ( 0..^ (
# `  P )
)  <->  i  e.  ( 0..^ N ) ) )
4443ad2antll 765 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( i  e.  ( 0..^ ( # `  P
) )  <->  i  e.  ( 0..^ N ) ) )
4544adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( i  e.  ( 0..^ ( # `  P
) )  <->  i  e.  ( 0..^ N ) ) )
4641, 45mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
i  e.  ( 0..^ ( # `  P
) ) )
47 ccatval1 13361 . . . . . . . . . . . . . . 15  |-  ( ( P  e. Word  (Vtx `  G )  /\  <" ( P `  0
) ">  e. Word  (Vtx
`  G )  /\  i  e.  ( 0..^ ( # `  P
) ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  i )  =  ( P `  i ) )
4811, 12, 46, 47syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  i )  =  ( P `  i ) )
4948eqcomd 2628 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( P `  i
)  =  ( ( P ++  <" ( P `
 0 ) "> ) `  i
) )
50 elfzom1p1elfzo 12547 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( i  +  1 )  e.  ( 0..^ N ) )
5150adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( i  +  1 )  e.  ( 0..^ N ) )
5242ad2antll 765 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( 0..^ ( # `  P ) )  =  ( 0..^ N ) )
5352adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 0..^ ( # `  P ) )  =  ( 0..^ N ) )
5451, 53eleqtrrd 2704 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( i  +  1 )  e.  ( 0..^ ( # `  P
) ) )
55 ccatval1 13361 . . . . . . . . . . . . . . 15  |-  ( ( P  e. Word  (Vtx `  G )  /\  <" ( P `  0
) ">  e. Word  (Vtx
`  G )  /\  ( i  +  1 )  e.  ( 0..^ ( # `  P
) ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  ( i  +  1 ) )  =  ( P `  ( i  +  1 ) ) )
5611, 12, 54, 55syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  ( i  +  1 ) )  =  ( P `  ( i  +  1 ) ) )
5756eqcomd 2628 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( P `  (
i  +  1 ) )  =  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) )
5849, 57preq12d 4276 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  =  { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) } )
5958eleq1d 2686 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  { (
( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
6059ralbidva 2985 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  i ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
6160biimpcd 239 . . . . . . . . 9  |-  ( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  -> 
( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G
)  /\  ( # `  P
)  =  N ) )  ->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  i ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
6261adantr 481 . . . . . . . 8  |-  ( ( A. i  e.  ( 0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) )  -> 
( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G
)  /\  ( # `  P
)  =  N ) )  ->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  i ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
6362expdcom 455 . . . . . . 7  |-  ( N  e.  NN  ->  (
( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  ->  (
( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  P ) ,  ( P `  0
) }  e.  (Edg
`  G ) )  ->  A. i  e.  ( 0..^ ( N  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) ) )
64633imp 1256 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  A. i  e.  ( 0..^ ( N  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )
65 fzo0end 12560 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( 0..^ N ) )
6665adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( N  -  1 )  e.  ( 0..^ N ) )
6742eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  P )  =  N  ->  ( ( N  -  1 )  e.  ( 0..^ (
# `  P )
)  <->  ( N  - 
1 )  e.  ( 0..^ N ) ) )
6867ad2antll 765 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( ( N  - 
1 )  e.  ( 0..^ ( # `  P
) )  <->  ( N  -  1 )  e.  ( 0..^ N ) ) )
6966, 68mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( N  -  1 )  e.  ( 0..^ ( # `  P
) ) )
70 ccatval1 13361 . . . . . . . . . . . . . . 15  |-  ( ( P  e. Word  (Vtx `  G )  /\  <" ( P `  0
) ">  e. Word  (Vtx
`  G )  /\  ( N  -  1
)  e.  ( 0..^ ( # `  P
) ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  ( N  -  1 ) )  =  ( P `  ( N  -  1 ) ) )
711, 7, 69, 70syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  ( N  -  1 ) )  =  ( P `  ( N  -  1 ) ) )
72 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  ( # `  P
)  ->  ( N  -  1 )  =  ( ( # `  P
)  -  1 ) )
7372fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( N  =  ( # `  P
)  ->  ( P `  ( N  -  1 ) )  =  ( P `  ( (
# `  P )  -  1 ) ) )
7473eqcoms 2630 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  P )  =  N  ->  ( P `
 ( N  - 
1 ) )  =  ( P `  (
( # `  P )  -  1 ) ) )
7574adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  ->  ( P `  ( N  -  1 ) )  =  ( P `  ( ( # `  P
)  -  1 ) ) )
76 lsw 13351 . . . . . . . . . . . . . . . . 17  |-  ( P  e. Word  (Vtx `  G
)  ->  ( lastS  `  P
)  =  ( P `
 ( ( # `  P )  -  1 ) ) )
7776adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  ->  ( lastS  `  P )  =  ( P `  ( (
# `  P )  -  1 ) ) )
7875, 77eqtr4d 2659 . . . . . . . . . . . . . . 15  |-  ( ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  ->  ( P `  ( N  -  1 ) )  =  ( lastS  `  P
) )
7978adantl 482 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( P `  ( N  -  1 ) )  =  ( lastS  `  P
) )
8071, 79eqtr2d 2657 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( lastS  `  P )  =  ( ( P ++  <" ( P `  0
) "> ) `  ( N  -  1 ) ) )
81 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( N  =  ( # `  P
)  ->  ( ( P ++  <" ( P `
 0 ) "> ) `  N
)  =  ( ( P ++  <" ( P `
 0 ) "> ) `  ( # `
 P ) ) )
8281eqcoms 2630 . . . . . . . . . . . . . . 15  |-  ( (
# `  P )  =  N  ->  ( ( P ++  <" ( P `
 0 ) "> ) `  N
)  =  ( ( P ++  <" ( P `
 0 ) "> ) `  ( # `
 P ) ) )
8382ad2antll 765 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  N )  =  ( ( P ++  <" ( P `  0 ) "> ) `  ( # `
 P ) ) )
84 nncn 11028 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  N  e.  CC )
85 1cnd 10056 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  1  e.  CC )
8684, 85npcand 10396 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
8786eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  =  ( ( N  -  1 )  +  1 ) )
8887fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( P ++  <" ( P `  0 ) "> ) `  N
)  =  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) )
8988adantr 481 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  N )  =  ( ( P ++  <" ( P `  0 ) "> ) `  (
( N  -  1 )  +  1 ) ) )
90 ccatws1ls 13410 . . . . . . . . . . . . . . 15  |-  ( ( P  e. Word  (Vtx `  G )  /\  ( P `  0 )  e.  (Vtx `  G )
)  ->  ( ( P ++  <" ( P `
 0 ) "> ) `  ( # `
 P ) )  =  ( P ` 
0 ) )
911, 2, 90syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  ( # `  P
) )  =  ( P `  0 ) )
9283, 89, 913eqtr3rd 2665 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( P `  0
)  =  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) )
9380, 92preq12d 4276 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  ->  { ( lastS  `  P ) ,  ( P ` 
0 ) }  =  { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( N  -  1 ) ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( ( N  -  1 )  +  1 ) ) } )
9493eleq1d 2686 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( { ( lastS  `  P
) ,  ( P `
 0 ) }  e.  (Edg `  G
)  <->  { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( N  -  1 ) ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( ( N  -  1 )  +  1 ) ) }  e.  (Edg `  G ) ) )
9594biimpcd 239 . . . . . . . . . 10  |-  ( { ( lastS  `  P ) ,  ( P ` 
0 ) }  e.  (Edg `  G )  -> 
( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G
)  /\  ( # `  P
)  =  N ) )  ->  { (
( P ++  <" ( P `  0 ) "> ) `  ( N  -  1 ) ) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) }  e.  (Edg
`  G ) ) )
9695adantl 482 . . . . . . . . 9  |-  ( ( A. i  e.  ( 0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) )  -> 
( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G
)  /\  ( # `  P
)  =  N ) )  ->  { (
( P ++  <" ( P `  0 ) "> ) `  ( N  -  1 ) ) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) }  e.  (Edg
`  G ) ) )
9796expdcom 455 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  ->  (
( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  P ) ,  ( P `  0
) }  e.  (Edg
`  G ) )  ->  { ( ( P ++  <" ( P `
 0 ) "> ) `  ( N  -  1 ) ) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) }  e.  (Edg
`  G ) ) ) )
98973imp 1256 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  { ( ( P ++  <" ( P `
 0 ) "> ) `  ( N  -  1 ) ) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) }  e.  (Edg
`  G ) )
99 ovex 6678 . . . . . . . 8  |-  ( N  -  1 )  e. 
_V
100 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  ( N  - 
1 )  ->  (
( P ++  <" ( P `  0 ) "> ) `  i
)  =  ( ( P ++  <" ( P `
 0 ) "> ) `  ( N  -  1 ) ) )
101 oveq1 6657 . . . . . . . . . . 11  |-  ( i  =  ( N  - 
1 )  ->  (
i  +  1 )  =  ( ( N  -  1 )  +  1 ) )
102101fveq2d 6195 . . . . . . . . . 10  |-  ( i  =  ( N  - 
1 )  ->  (
( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) )  =  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) )
103100, 102preq12d 4276 . . . . . . . . 9  |-  ( i  =  ( N  - 
1 )  ->  { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  =  {
( ( P ++  <" ( P `  0
) "> ) `  ( N  -  1 ) ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
( N  -  1 )  +  1 ) ) } )
104103eleq1d 2686 . . . . . . . 8  |-  ( i  =  ( N  - 
1 )  ->  ( { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  i ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { (
( P ++  <" ( P `  0 ) "> ) `  ( N  -  1 ) ) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) }  e.  (Edg
`  G ) ) )
10599, 104ralsn 4222 . . . . . . 7  |-  ( A. i  e.  { ( N  -  1 ) }  { ( ( P ++  <" ( P `
 0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  { (
( P ++  <" ( P `  0 ) "> ) `  ( N  -  1 ) ) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
( N  -  1 )  +  1 ) ) }  e.  (Edg
`  G ) )
10698, 105sylibr 224 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  A. i  e.  {
( N  -  1 ) }  { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )
10784, 85, 85addsubd 10413 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  ( ( N  -  1 )  +  1 ) )
108107oveq2d 6666 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0..^ ( ( N  +  1 )  - 
1 ) )  =  ( 0..^ ( ( N  -  1 )  +  1 ) ) )
109 nnm1nn0 11334 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
110 elnn0uz 11725 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  e.  NN0  <->  ( N  - 
1 )  e.  (
ZZ>= `  0 ) )
111109, 110sylib 208 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
112 fzosplitsn 12576 . . . . . . . . . . 11  |-  ( ( N  -  1 )  e.  ( ZZ>= `  0
)  ->  ( 0..^ ( ( N  - 
1 )  +  1 ) )  =  ( ( 0..^ ( N  -  1 ) )  u.  { ( N  -  1 ) } ) )
113111, 112syl 17 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0..^ ( ( N  -  1 )  +  1 ) )  =  ( ( 0..^ ( N  -  1 ) )  u.  { ( N  -  1 ) } ) )
114108, 113eqtrd 2656 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0..^ ( ( N  +  1 )  - 
1 ) )  =  ( ( 0..^ ( N  -  1 ) )  u.  { ( N  -  1 ) } ) )
115114raleqdv 3144 . . . . . . . 8  |-  ( N  e.  NN  ->  ( A. i  e.  (
0..^ ( ( N  +  1 )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  A. i  e.  ( ( 0..^ ( N  -  1 ) )  u.  { ( N  -  1 ) } ) { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
116 ralunb 3794 . . . . . . . 8  |-  ( A. i  e.  ( (
0..^ ( N  - 
1 ) )  u. 
{ ( N  - 
1 ) } ) { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  i ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  ( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  A. i  e.  { ( N  -  1 ) }  { ( ( P ++  <" ( P `
 0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
117115, 116syl6bb 276 . . . . . . 7  |-  ( N  e.  NN  ->  ( A. i  e.  (
0..^ ( ( N  +  1 )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  ( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  A. i  e.  { ( N  -  1 ) }  { ( ( P ++  <" ( P `
 0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) ) )
1181173ad2ant1 1082 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( A. i  e.  ( 0..^ ( ( N  +  1 )  -  1 ) ) { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  i ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  ( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  A. i  e.  { ( N  -  1 ) }  { ( ( P ++  <" ( P `
 0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) ) )
11964, 106, 118mpbir2and 957 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  A. i  e.  ( 0..^ ( ( N  +  1 )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )
120 ccatlen 13360 . . . . . . . . . . 11  |-  ( ( P  e. Word  (Vtx `  G )  /\  <" ( P `  0
) ">  e. Word  (Vtx
`  G ) )  ->  ( # `  ( P ++  <" ( P `
 0 ) "> ) )  =  ( ( # `  P
)  +  ( # `  <" ( P `
 0 ) "> ) ) )
1211, 7, 120syl2anc 693 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( # `  ( P ++ 
<" ( P ` 
0 ) "> ) )  =  ( ( # `  P
)  +  ( # `  <" ( P `
 0 ) "> ) ) )
122 id 22 . . . . . . . . . . . 12  |-  ( (
# `  P )  =  N  ->  ( # `  P )  =  N )
123 s1len 13385 . . . . . . . . . . . . 13  |-  ( # `  <" ( P `
 0 ) "> )  =  1
124123a1i 11 . . . . . . . . . . . 12  |-  ( (
# `  P )  =  N  ->  ( # `  <" ( P `
 0 ) "> )  =  1 )
125122, 124oveq12d 6668 . . . . . . . . . . 11  |-  ( (
# `  P )  =  N  ->  ( (
# `  P )  +  ( # `  <" ( P `  0
) "> )
)  =  ( N  +  1 ) )
126125ad2antll 765 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( ( # `  P
)  +  ( # `  <" ( P `
 0 ) "> ) )  =  ( N  +  1 ) )
127121, 126eqtrd 2656 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( # `  ( P ++ 
<" ( P ` 
0 ) "> ) )  =  ( N  +  1 ) )
1281273adant3 1081 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( # `  ( P ++  <" ( P `
 0 ) "> ) )  =  ( N  +  1 ) )
129128oveq1d 6665 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( ( # `  ( P ++  <" ( P `  0 ) "> ) )  - 
1 )  =  ( ( N  +  1 )  -  1 ) )
130129oveq2d 6666 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( 0..^ ( ( # `  ( P ++  <" ( P `
 0 ) "> ) )  - 
1 ) )  =  ( 0..^ ( ( N  +  1 )  -  1 ) ) )
131130raleqdv 3144 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  ( P ++  <" ( P ` 
0 ) "> ) )  -  1 ) ) { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  A. i  e.  ( 0..^ ( ( N  +  1 )  -  1 ) ) { ( ( P ++ 
<" ( P ` 
0 ) "> ) `  i ) ,  ( ( P ++ 
<" ( P ` 
0 ) "> ) `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
132119, 131mpbird 247 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  A. i  e.  ( 0..^ ( ( # `  ( P ++  <" ( P `  0 ) "> ) )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )
1335, 10, 1323jca 1242 . . 3  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( ( P ++ 
<" ( P ` 
0 ) "> )  =/=  (/)  /\  ( P ++ 
<" ( P ` 
0 ) "> )  e. Word  (Vtx `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  ( P ++  <" ( P ` 
0 ) "> ) )  -  1 ) ) { ( ( P ++  <" ( P `  0 ) "> ) `  i
) ,  ( ( P ++  <" ( P `
 0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
134 nnnn0 11299 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
135 iswwlksn 26730 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( P ++  <" ( P `
 0 ) "> )  e.  ( N WWalksN  G )  <->  ( ( P ++  <" ( P `
 0 ) "> )  e.  (WWalks `  G )  /\  ( # `
 ( P ++  <" ( P `  0
) "> )
)  =  ( N  +  1 ) ) ) )
136134, 135syl 17 . . . . 5  |-  ( N  e.  NN  ->  (
( P ++  <" ( P `  0 ) "> )  e.  ( N WWalksN  G )  <->  ( ( P ++  <" ( P `
 0 ) "> )  e.  (WWalks `  G )  /\  ( # `
 ( P ++  <" ( P `  0
) "> )
)  =  ( N  +  1 ) ) ) )
137 eqid 2622 . . . . . . . 8  |-  (Vtx `  G )  =  (Vtx
`  G )
138 eqid 2622 . . . . . . . 8  |-  (Edg `  G )  =  (Edg
`  G )
139137, 138iswwlks 26728 . . . . . . 7  |-  ( ( P ++  <" ( P `
 0 ) "> )  e.  (WWalks `  G )  <->  ( ( P ++  <" ( P `
 0 ) "> )  =/=  (/)  /\  ( P ++  <" ( P `
 0 ) "> )  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  ( P ++  <" ( P `
 0 ) "> ) )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
140139a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  (
( P ++  <" ( P `  0 ) "> )  e.  (WWalks `  G )  <->  ( ( P ++  <" ( P `
 0 ) "> )  =/=  (/)  /\  ( P ++  <" ( P `
 0 ) "> )  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  ( P ++  <" ( P `
 0 ) "> ) )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) ) )
141140anbi1d 741 . . . . 5  |-  ( N  e.  NN  ->  (
( ( P ++  <" ( P `  0
) "> )  e.  (WWalks `  G )  /\  ( # `  ( P ++  <" ( P `
 0 ) "> ) )  =  ( N  +  1 ) )  <->  ( (
( P ++  <" ( P `  0 ) "> )  =/=  (/)  /\  ( P ++  <" ( P `
 0 ) "> )  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  ( P ++  <" ( P `
 0 ) "> ) )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  ( P ++  <" ( P `
 0 ) "> ) )  =  ( N  +  1 ) ) ) )
142136, 141bitrd 268 . . . 4  |-  ( N  e.  NN  ->  (
( P ++  <" ( P `  0 ) "> )  e.  ( N WWalksN  G )  <->  ( (
( P ++  <" ( P `  0 ) "> )  =/=  (/)  /\  ( P ++  <" ( P `
 0 ) "> )  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  ( P ++  <" ( P `
 0 ) "> ) )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  ( P ++  <" ( P `
 0 ) "> ) )  =  ( N  +  1 ) ) ) )
1431423ad2ant1 1082 . . 3  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( ( P ++ 
<" ( P ` 
0 ) "> )  e.  ( N WWalksN  G )  <->  ( ( ( P ++  <" ( P `
 0 ) "> )  =/=  (/)  /\  ( P ++  <" ( P `
 0 ) "> )  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  ( P ++  <" ( P `
 0 ) "> ) )  - 
1 ) ) { ( ( P ++  <" ( P `  0
) "> ) `  i ) ,  ( ( P ++  <" ( P `  0 ) "> ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  ( P ++  <" ( P `
 0 ) "> ) )  =  ( N  +  1 ) ) ) )
144133, 128, 143mpbir2and 957 . 2  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( P ++  <" ( P `  0
) "> )  e.  ( N WWalksN  G )
)
145 lswccats1 13411 . . . . 5  |-  ( ( P  e. Word  (Vtx `  G )  /\  ( P `  0 )  e.  (Vtx `  G )
)  ->  ( lastS  `  ( P ++  <" ( P `
 0 ) "> ) )  =  ( P `  0
) )
1461, 2, 145syl2anc 693 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( lastS  `  ( P ++  <" ( P `  0
) "> )
)  =  ( P `
 0 ) )
147 lbfzo0 12507 . . . . . . . 8  |-  ( 0  e.  ( 0..^ N )  <->  N  e.  NN )
148147biimpri 218 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  ( 0..^ N ) )
149148adantr 481 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
0  e.  ( 0..^ N ) )
15042eleq2d 2687 . . . . . . 7  |-  ( (
# `  P )  =  N  ->  ( 0  e.  ( 0..^ (
# `  P )
)  <->  0  e.  ( 0..^ N ) ) )
151150ad2antll 765 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( 0  e.  ( 0..^ ( # `  P
) )  <->  0  e.  ( 0..^ N ) ) )
152149, 151mpbird 247 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
0  e.  ( 0..^ ( # `  P
) ) )
153 ccatval1 13361 . . . . 5  |-  ( ( P  e. Word  (Vtx `  G )  /\  <" ( P `  0
) ">  e. Word  (Vtx
`  G )  /\  0  e.  ( 0..^ ( # `  P
) ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  0 )  =  ( P `  0
) )
1541, 7, 152, 153syl3anc 1326 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( ( P ++  <" ( P `  0
) "> ) `  0 )  =  ( P `  0
) )
155146, 154eqtr4d 2659 . . 3  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N ) )  -> 
( lastS  `  ( P ++  <" ( P `  0
) "> )
)  =  ( ( P ++  <" ( P `
 0 ) "> ) `  0
) )
1561553adant3 1081 . 2  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( lastS  `  ( P ++ 
<" ( P ` 
0 ) "> ) )  =  ( ( P ++  <" ( P `  0 ) "> ) `  0
) )
157 fveq2 6191 . . . 4  |-  ( w  =  ( P ++  <" ( P `  0
) "> )  ->  ( lastS  `  w )  =  ( lastS  `  ( P ++ 
<" ( P ` 
0 ) "> ) ) )
158 fveq1 6190 . . . 4  |-  ( w  =  ( P ++  <" ( P `  0
) "> )  ->  ( w `  0
)  =  ( ( P ++  <" ( P `
 0 ) "> ) `  0
) )
159157, 158eqeq12d 2637 . . 3  |-  ( w  =  ( P ++  <" ( P `  0
) "> )  ->  ( ( lastS  `  w
)  =  ( w `
 0 )  <->  ( lastS  `  ( P ++  <" ( P `
 0 ) "> ) )  =  ( ( P ++  <" ( P `  0
) "> ) `  0 ) ) )
160 clwwlksbij.d . . 3  |-  D  =  { w  e.  ( N WWalksN  G )  |  ( lastS  `  w )  =  ( w `  0 ) }
161159, 160elrab2 3366 . 2  |-  ( ( P ++  <" ( P `
 0 ) "> )  e.  D  <->  ( ( P ++  <" ( P `  0 ) "> )  e.  ( N WWalksN  G )  /\  ( lastS  `  ( P ++  <" ( P `  0 ) "> ) )  =  ( ( P ++  <" ( P `  0
) "> ) `  0 ) ) )
162144, 156, 161sylanbrc 698 1  |-  ( ( N  e.  NN  /\  ( P  e. Word  (Vtx `  G )  /\  ( # `
 P )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  P ) ,  ( P `  0 ) }  e.  (Edg `  G ) ) )  ->  ( P ++  <" ( P `  0
) "> )  e.  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    u. cun 3572   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294  Vtxcvtx 25874  Edgcedg 25939  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  clwwlksfo  26918  clwwlksnwwlkncl  26921
  Copyright terms: Public domain W3C validator