MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem3 Structured version   Visualization version   Unicode version

Theorem wwlksnextproplem3 26806
Description: Lemma 3 for wwlksnextprop 26807. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.)
Hypotheses
Ref Expression
wwlksnextprop.x  |-  X  =  ( ( N  + 
1 ) WWalksN  G )
wwlksnextprop.e  |-  E  =  (Edg `  G )
wwlksnextprop.y  |-  Y  =  { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  P }
Assertion
Ref Expression
wwlksnextproplem3  |-  ( ( W  e.  X  /\  ( W `  0 )  =  P  /\  N  e.  NN0 )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  Y
)
Distinct variable groups:    w, G    w, N    w, P    w, W
Allowed substitution hints:    E( w)    X( w)    Y( w)

Proof of Theorem wwlksnextproplem3
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11333 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2 iswwlksn 26730 . . . . . . . . . . . 12  |-  ( ( N  +  1 )  e.  NN0  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  <->  ( W  e.  (WWalks `  G )  /\  ( # `  W
)  =  ( ( N  +  1 )  +  1 ) ) ) )
31, 2syl 17 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  <->  ( W  e.  (WWalks `  G )  /\  ( # `  W
)  =  ( ( N  +  1 )  +  1 ) ) ) )
4 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  (Vtx `  G )  =  (Vtx
`  G )
54wwlkbp 26732 . . . . . . . . . . . . . . . . . 18  |-  ( W  e.  (WWalks `  G
)  ->  ( G  e.  _V  /\  W  e. Word 
(Vtx `  G )
) )
6 lencl 13324 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e. Word  (Vtx `  G
)  ->  ( # `  W
)  e.  NN0 )
7 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  <->  ( ( N  +  1 )  +  1 )  =  ( # `  W
) )
8 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  CC )
98adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( # `  W
)  e.  NN0  /\  N  e.  NN0 )  -> 
( # `  W )  e.  CC )
10 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( # `  W
)  e.  NN0  /\  N  e.  NN0 )  -> 
1  e.  CC )
11 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  +  1 )  e.  NN0  ->  ( N  +  1 )  e.  CC )
121, 11syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
1312adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( # `  W
)  e.  NN0  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  CC )
14 subadd2 10285 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( # `  W
)  e.  CC  /\  1  e.  CC  /\  ( N  +  1 )  e.  CC )  -> 
( ( ( # `  W )  -  1 )  =  ( N  +  1 )  <->  ( ( N  +  1 )  +  1 )  =  ( # `  W
) ) )
1514bicomd 213 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( # `  W
)  e.  CC  /\  1  e.  CC  /\  ( N  +  1 )  e.  CC )  -> 
( ( ( N  +  1 )  +  1 )  =  (
# `  W )  <->  ( ( # `  W
)  -  1 )  =  ( N  + 
1 ) ) )
169, 10, 13, 15syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( # `  W
)  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( N  +  1 )  +  1 )  =  (
# `  W )  <->  ( ( # `  W
)  -  1 )  =  ( N  + 
1 ) ) )
177, 16syl5bb 272 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( # `  W
)  e.  NN0  /\  N  e.  NN0 )  -> 
( ( # `  W
)  =  ( ( N  +  1 )  +  1 )  <->  ( ( # `
 W )  - 
1 )  =  ( N  +  1 ) ) )
18 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( # `  W
)  -  1 )  =  ( N  + 
1 )  <->  ( N  +  1 )  =  ( ( # `  W
)  -  1 ) )
1918biimpi 206 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( # `  W
)  -  1 )  =  ( N  + 
1 )  ->  ( N  +  1 )  =  ( ( # `  W )  -  1 ) )
2017, 19syl6bi 243 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( # `  W
)  e.  NN0  /\  N  e.  NN0 )  -> 
( ( # `  W
)  =  ( ( N  +  1 )  +  1 )  -> 
( N  +  1 )  =  ( (
# `  W )  -  1 ) ) )
2120ex 450 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  W )  e.  NN0  ->  ( N  e.  NN0  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( N  +  1 )  =  ( ( # `  W
)  -  1 ) ) ) )
2221com23 86 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  W )  e.  NN0  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( N  e.  NN0  ->  ( N  +  1 )  =  ( ( # `  W
)  -  1 ) ) ) )
236, 22syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( W  e. Word  (Vtx `  G
)  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( N  e.  NN0  ->  ( N  +  1 )  =  ( ( # `  W
)  -  1 ) ) ) )
245, 23simpl2im 658 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  (WWalks `  G
)  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( N  e.  NN0  ->  ( N  +  1 )  =  ( ( # `  W
)  -  1 ) ) ) )
2524imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  ( N  e.  NN0  ->  ( N  +  1 )  =  ( ( # `  W )  -  1 ) ) )
2625imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( N  +  1 )  =  ( ( # `  W )  -  1 ) )
2726opeq2d 4409 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  <. 0 ,  ( N  + 
1 ) >.  =  <. 0 ,  ( ( # `
 W )  - 
1 ) >. )
2827oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) )
29 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  W  e.  (WWalks `  G )
)
30 nn0ge0 11318 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  0  <_  N )
31 2re 11090 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  RR
3231a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  2  e.  RR )
33 nn0re 11301 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  N  e.  RR )
3432, 33addge02d 10616 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( 0  <_  N  <->  2  <_  ( N  +  2 ) ) )
3530, 34mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  2  <_ 
( N  +  2 ) )
36 nn0cn 11302 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  N  e.  CC )
37 1cnd 10056 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  1  e.  CC )
3836, 37, 37addassd 10062 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  +  1 )  =  ( N  +  ( 1  +  1 ) ) )
39 1p1e2 11134 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  +  1 )  =  2
4039a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( 1  +  1 )  =  2 )
4140oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( N  +  ( 1  +  1 ) )  =  ( N  +  2 ) )
4238, 41eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  +  1 )  =  ( N  +  2 ) )
4335, 42breqtrrd 4681 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  2  <_ 
( ( N  + 
1 )  +  1 ) )
4443adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  2  <_  ( ( N  + 
1 )  +  1 ) )
45 breq2 4657 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  (
2  <_  ( # `  W
)  <->  2  <_  (
( N  +  1 )  +  1 ) ) )
4645ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  (
2  <_  ( # `  W
)  <->  2  <_  (
( N  +  1 )  +  1 ) ) )
4744, 46mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  2  <_  ( # `  W
) )
4829, 47jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( W  e.  (WWalks `  G
)  /\  2  <_  (
# `  W )
) )
49 wwlksm1edg 26767 . . . . . . . . . . . . . 14  |-  ( ( W  e.  (WWalks `  G )  /\  2  <_  ( # `  W
) )  ->  ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  e.  (WWalks `  G ) )
5048, 49syl 17 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  e.  (WWalks `  G ) )
5128, 50eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  (WWalks `  G ) )
5251expcom 451 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( W  e.  (WWalks `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  (WWalks `  G ) ) )
533, 52sylbid 230 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( W substr  <.
0 ,  ( N  +  1 ) >.
)  e.  (WWalks `  G ) ) )
5453com12 32 . . . . . . . . 9  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( N  e.  NN0  ->  ( W substr  <.
0 ,  ( N  +  1 ) >.
)  e.  (WWalks `  G ) ) )
5554adantr 481 . . . . . . . 8  |-  ( ( W  e.  ( ( N  +  1 ) WWalksN  G )  /\  ( W `  0 )  =  P )  ->  ( N  e.  NN0  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  (WWalks `  G ) ) )
5655imp 445 . . . . . . 7  |-  ( ( ( W  e.  ( ( N  +  1 ) WWalksN  G )  /\  ( W `  0 )  =  P )  /\  N  e.  NN0 )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  (WWalks `  G ) )
57 wwlksnextprop.e . . . . . . . . . . . 12  |-  E  =  (Edg `  G )
584, 57wwlknp 26734 . . . . . . . . . . 11  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( W  e. Word  (Vtx `  G )  /\  ( # `  W
)  =  ( ( N  +  1 )  +  1 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E ) )
59 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  W  e. Word  (Vtx `  G )
)
60 peano2nn0 11333 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  +  1 )  e. 
NN0 )
611, 60syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  +  1 )  e. 
NN0 )
62 peano2re 10209 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
6333, 62syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  RR )
6463lep1d 10955 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( N  +  1 )  <_ 
( ( N  + 
1 )  +  1 ) )
65 elfz2nn0 12431 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  +  1 )  e.  ( 0 ... ( ( N  + 
1 )  +  1 ) )  <->  ( ( N  +  1 )  e.  NN0  /\  (
( N  +  1 )  +  1 )  e.  NN0  /\  ( N  +  1 )  <_  ( ( N  +  1 )  +  1 ) ) )
661, 61, 64, 65syl3anbrc 1246 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( 0 ... (
( N  +  1 )  +  1 ) ) )
6766adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  W
)  =  ( ( N  +  1 )  +  1 )  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  ( 0 ... ( ( N  +  1 )  +  1 ) ) )
68 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  (
0 ... ( # `  W
) )  =  ( 0 ... ( ( N  +  1 )  +  1 ) ) )
6968adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  W
)  =  ( ( N  +  1 )  +  1 )  /\  N  e.  NN0 )  -> 
( 0 ... ( # `
 W ) )  =  ( 0 ... ( ( N  + 
1 )  +  1 ) ) )
7067, 69eleqtrrd 2704 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  W
)  =  ( ( N  +  1 )  +  1 )  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  ( 0 ... ( # `  W
) ) )
7170adantll 750 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  ( 0 ... ( # `  W
) ) )
7259, 71jca 554 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( W  e. Word  (Vtx `  G
)  /\  ( N  +  1 )  e.  ( 0 ... ( # `
 W ) ) ) )
7372ex 450 . . . . . . . . . . . 12  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  ( N  e.  NN0  ->  ( W  e. Word  (Vtx `  G
)  /\  ( N  +  1 )  e.  ( 0 ... ( # `
 W ) ) ) ) )
74733adant3 1081 . . . . . . . . . . 11  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E )  ->  ( N  e. 
NN0  ->  ( W  e. Word 
(Vtx `  G )  /\  ( N  +  1 )  e.  ( 0 ... ( # `  W
) ) ) ) )
7558, 74syl 17 . . . . . . . . . 10  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( N  e.  NN0  ->  ( W  e. Word  (Vtx `  G )  /\  ( N  +  1 )  e.  ( 0 ... ( # `  W
) ) ) ) )
7675adantr 481 . . . . . . . . 9  |-  ( ( W  e.  ( ( N  +  1 ) WWalksN  G )  /\  ( W `  0 )  =  P )  ->  ( N  e.  NN0  ->  ( W  e. Word  (Vtx `  G
)  /\  ( N  +  1 )  e.  ( 0 ... ( # `
 W ) ) ) ) )
7776imp 445 . . . . . . . 8  |-  ( ( ( W  e.  ( ( N  +  1 ) WWalksN  G )  /\  ( W `  0 )  =  P )  /\  N  e.  NN0 )  ->  ( W  e. Word  (Vtx `  G
)  /\  ( N  +  1 )  e.  ( 0 ... ( # `
 W ) ) ) )
78 swrd0len 13422 . . . . . . . 8  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( N  +  1 )  e.  ( 0 ... ( # `  W
) ) )  -> 
( # `  ( W substr  <. 0 ,  ( N  +  1 ) >.
) )  =  ( N  +  1 ) )
7977, 78syl 17 . . . . . . 7  |-  ( ( ( W  e.  ( ( N  +  1 ) WWalksN  G )  /\  ( W `  0 )  =  P )  /\  N  e.  NN0 )  ->  ( # `
 ( W substr  <. 0 ,  ( N  + 
1 ) >. )
)  =  ( N  +  1 ) )
8056, 79jca 554 . . . . . 6  |-  ( ( ( W  e.  ( ( N  +  1 ) WWalksN  G )  /\  ( W `  0 )  =  P )  /\  N  e.  NN0 )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. )  e.  (WWalks `  G )  /\  ( # `
 ( W substr  <. 0 ,  ( N  + 
1 ) >. )
)  =  ( N  +  1 ) ) )
81 iswwlksn 26730 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  ( N WWalksN  G )  <->  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  (WWalks `  G )  /\  ( # `
 ( W substr  <. 0 ,  ( N  + 
1 ) >. )
)  =  ( N  +  1 ) ) ) )
8281adantl 482 . . . . . 6  |-  ( ( ( W  e.  ( ( N  +  1 ) WWalksN  G )  /\  ( W `  0 )  =  P )  /\  N  e.  NN0 )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. )  e.  ( N WWalksN  G )  <->  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  (WWalks `  G )  /\  ( # `
 ( W substr  <. 0 ,  ( N  + 
1 ) >. )
)  =  ( N  +  1 ) ) ) )
8380, 82mpbird 247 . . . . 5  |-  ( ( ( W  e.  ( ( N  +  1 ) WWalksN  G )  /\  ( W `  0 )  =  P )  /\  N  e.  NN0 )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  ( N WWalksN  G ) )
8483exp31 630 . . . 4  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( ( W `  0 )  =  P  ->  ( N  e.  NN0  ->  ( W substr  <. 0 ,  ( N  +  1 ) >.
)  e.  ( N WWalksN  G ) ) ) )
85 wwlksnextprop.x . . . 4  |-  X  =  ( ( N  + 
1 ) WWalksN  G )
8684, 85eleq2s 2719 . . 3  |-  ( W  e.  X  ->  (
( W `  0
)  =  P  -> 
( N  e.  NN0  ->  ( W substr  <. 0 ,  ( N  + 
1 ) >. )  e.  ( N WWalksN  G )
) ) )
87863imp 1256 . 2  |-  ( ( W  e.  X  /\  ( W `  0 )  =  P  /\  N  e.  NN0 )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  ( N WWalksN  G ) )
8885wwlksnextproplem1 26804 . . . 4  |-  ( ( W  e.  X  /\  N  e.  NN0 )  -> 
( ( W substr  <. 0 ,  ( N  + 
1 ) >. ) `  0 )  =  ( W `  0
) )
89883adant2 1080 . . 3  |-  ( ( W  e.  X  /\  ( W `  0 )  =  P  /\  N  e.  NN0 )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. ) `  0
)  =  ( W `
 0 ) )
90 simp2 1062 . . 3  |-  ( ( W  e.  X  /\  ( W `  0 )  =  P  /\  N  e.  NN0 )  ->  ( W `  0 )  =  P )
9189, 90eqtrd 2656 . 2  |-  ( ( W  e.  X  /\  ( W `  0 )  =  P  /\  N  e.  NN0 )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. ) `  0
)  =  P )
92 fveq1 6190 . . . 4  |-  ( w  =  ( W substr  <. 0 ,  ( N  + 
1 ) >. )  ->  ( w `  0
)  =  ( ( W substr  <. 0 ,  ( N  +  1 )
>. ) `  0 ) )
9392eqeq1d 2624 . . 3  |-  ( w  =  ( W substr  <. 0 ,  ( N  + 
1 ) >. )  ->  ( ( w ` 
0 )  =  P  <-> 
( ( W substr  <. 0 ,  ( N  + 
1 ) >. ) `  0 )  =  P ) )
94 wwlksnextprop.y . . 3  |-  Y  =  { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  P }
9593, 94elrab2 3366 . 2  |-  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  Y  <->  ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  e.  ( N WWalksN  G )  /\  ( ( W substr  <. 0 ,  ( N  + 
1 ) >. ) `  0 )  =  P ) )
9687, 91, 95sylanbrc 698 1  |-  ( ( W  e.  X  /\  ( W `  0 )  =  P  /\  N  e.  NN0 )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  Y
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   {cpr 4179   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   2c2 11070   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wwlksnextprop  26807
  Copyright terms: Public domain W3C validator