MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixp0x Structured version   Visualization version   Unicode version

Theorem ixp0x 7936
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
Assertion
Ref Expression
ixp0x  |-  X_ x  e.  (/)  A  =  { (/)
}

Proof of Theorem ixp0x
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 dfixp 7910 . 2  |-  X_ x  e.  (/)  A  =  {
f  |  ( f  Fn  (/)  /\  A. x  e.  (/)  ( f `  x )  e.  A
) }
2 velsn 4193 . . . 4  |-  ( f  e.  { (/) }  <->  f  =  (/) )
3 fn0 6011 . . . 4  |-  ( f  Fn  (/)  <->  f  =  (/) )
4 ral0 4076 . . . . 5  |-  A. x  e.  (/)  ( f `  x )  e.  A
54biantru 526 . . . 4  |-  ( f  Fn  (/)  <->  ( f  Fn  (/)  /\  A. x  e.  (/)  ( f `  x
)  e.  A ) )
62, 3, 53bitr2i 288 . . 3  |-  ( f  e.  { (/) }  <->  ( f  Fn  (/)  /\  A. x  e.  (/)  ( f `  x )  e.  A
) )
76abbi2i 2738 . 2  |-  { (/) }  =  { f  |  ( f  Fn  (/)  /\  A. x  e.  (/)  ( f `
 x )  e.  A ) }
81, 7eqtr4i 2647 1  |-  X_ x  e.  (/)  A  =  { (/)
}
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   (/)c0 3915   {csn 4177    Fn wfn 5883   ` cfv 5888   X_cixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-fun 5890  df-fn 5891  df-ixp 7909
This theorem is referenced by:  0elixp  7939  ptcmpfi  21616  finixpnum  33394  ioorrnopn  40525  ioorrnopnxr  40527  hoicvr  40762  ovnhoi  40817  ovnlecvr2  40824  hoiqssbl  40839  hoimbl  40845  iunhoiioo  40890
  Copyright terms: Public domain W3C validator