Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsucncmpi Structured version   Visualization version   Unicode version

Theorem limsucncmpi 32444
Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
Hypothesis
Ref Expression
limsucncmpi.1  |-  Lim  A
Assertion
Ref Expression
limsucncmpi  |-  -.  suc  A  e.  Comp

Proof of Theorem limsucncmpi
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . . . 5  |-  ( suc 
A  e.  Top  ->  suc 
A  e.  _V )
2 sucexb 7009 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
31, 2sylibr 224 . . . 4  |-  ( suc 
A  e.  Top  ->  A  e.  _V )
4 sssucid 5802 . . . . 5  |-  A  C_  suc  A
5 elpwg 4166 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  ~P suc  A  <-> 
A  C_  suc  A ) )
64, 5mpbiri 248 . . . 4  |-  ( A  e.  _V  ->  A  e.  ~P suc  A )
7 limsucncmpi.1 . . . . . . 7  |-  Lim  A
8 limuni 5785 . . . . . . 7  |-  ( Lim 
A  ->  A  =  U. A )
97, 8ax-mp 5 . . . . . 6  |-  A  = 
U. A
10 elin 3796 . . . . . . . . . 10  |-  ( z  e.  ( ~P A  i^i  Fin )  <->  ( z  e.  ~P A  /\  z  e.  Fin ) )
11 elpwi 4168 . . . . . . . . . . 11  |-  ( z  e.  ~P A  -> 
z  C_  A )
1211anim1i 592 . . . . . . . . . 10  |-  ( ( z  e.  ~P A  /\  z  e.  Fin )  ->  ( z  C_  A  /\  z  e.  Fin ) )
1310, 12sylbi 207 . . . . . . . . 9  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  (
z  C_  A  /\  z  e.  Fin )
)
14 nlim0 5783 . . . . . . . . . . . . . . . 16  |-  -.  Lim  (/)
157, 142th 254 . . . . . . . . . . . . . . 15  |-  ( Lim 
A  <->  -.  Lim  (/) )
16 xor3 372 . . . . . . . . . . . . . . 15  |-  ( -.  ( Lim  A  <->  Lim  (/) )  <->  ( Lim  A  <->  -.  Lim  (/) ) )
1715, 16mpbir 221 . . . . . . . . . . . . . 14  |-  -.  ( Lim  A  <->  Lim  (/) )
18 limeq 5735 . . . . . . . . . . . . . . 15  |-  ( A  =  (/)  ->  ( Lim 
A  <->  Lim  (/) ) )
1918necon3bi 2820 . . . . . . . . . . . . . 14  |-  ( -.  ( Lim  A  <->  Lim  (/) )  ->  A  =/=  (/) )
2017, 19ax-mp 5 . . . . . . . . . . . . 13  |-  A  =/=  (/)
21 uni0 4465 . . . . . . . . . . . . 13  |-  U. (/)  =  (/)
2220, 21neeqtrri 2867 . . . . . . . . . . . 12  |-  A  =/=  U. (/)
23 unieq 4444 . . . . . . . . . . . . 13  |-  ( z  =  (/)  ->  U. z  =  U. (/) )
2423neeq2d 2854 . . . . . . . . . . . 12  |-  ( z  =  (/)  ->  ( A  =/=  U. z  <->  A  =/=  U. (/) ) )
2522, 24mpbiri 248 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  A  =/=  U. z )
2625a1i 11 . . . . . . . . . 10  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  ( z  =  (/)  ->  A  =/=  U. z
) )
27 limord 5784 . . . . . . . . . . . . . 14  |-  ( Lim 
A  ->  Ord  A )
28 ordsson 6989 . . . . . . . . . . . . . 14  |-  ( Ord 
A  ->  A  C_  On )
297, 27, 28mp2b 10 . . . . . . . . . . . . 13  |-  A  C_  On
30 sstr2 3610 . . . . . . . . . . . . 13  |-  ( z 
C_  A  ->  ( A  C_  On  ->  z  C_  On ) )
3129, 30mpi 20 . . . . . . . . . . . 12  |-  ( z 
C_  A  ->  z  C_  On )
32 ordunifi 8210 . . . . . . . . . . . . 13  |-  ( ( z  C_  On  /\  z  e.  Fin  /\  z  =/=  (/) )  ->  U. z  e.  z )
33323expia 1267 . . . . . . . . . . . 12  |-  ( ( z  C_  On  /\  z  e.  Fin )  ->  (
z  =/=  (/)  ->  U. z  e.  z ) )
3431, 33sylan 488 . . . . . . . . . . 11  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  ( z  =/=  (/)  ->  U. z  e.  z ) )
35 ssel 3597 . . . . . . . . . . . . 13  |-  ( z 
C_  A  ->  ( U. z  e.  z  ->  U. z  e.  A
) )
367, 27ax-mp 5 . . . . . . . . . . . . . 14  |-  Ord  A
37 nordeq 5742 . . . . . . . . . . . . . 14  |-  ( ( Ord  A  /\  U. z  e.  A )  ->  A  =/=  U. z
)
3836, 37mpan 706 . . . . . . . . . . . . 13  |-  ( U. z  e.  A  ->  A  =/=  U. z )
3935, 38syl6 35 . . . . . . . . . . . 12  |-  ( z 
C_  A  ->  ( U. z  e.  z  ->  A  =/=  U. z
) )
4039adantr 481 . . . . . . . . . . 11  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  ( U. z  e.  z  ->  A  =/=  U. z ) )
4134, 40syld 47 . . . . . . . . . 10  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  ( z  =/=  (/)  ->  A  =/=  U. z ) )
4226, 41pm2.61dne 2880 . . . . . . . . 9  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  A  =/=  U. z
)
4313, 42syl 17 . . . . . . . 8  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  A  =/=  U. z )
4443neneqd 2799 . . . . . . 7  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  -.  A  =  U. z
)
4544nrex 3000 . . . . . 6  |-  -.  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z
46 unieq 4444 . . . . . . . . 9  |-  ( y  =  A  ->  U. y  =  U. A )
4746eqeq2d 2632 . . . . . . . 8  |-  ( y  =  A  ->  ( A  =  U. y  <->  A  =  U. A ) )
48 pweq 4161 . . . . . . . . . . 11  |-  ( y  =  A  ->  ~P y  =  ~P A
)
4948ineq1d 3813 . . . . . . . . . 10  |-  ( y  =  A  ->  ( ~P y  i^i  Fin )  =  ( ~P A  i^i  Fin ) )
5049rexeqdv 3145 . . . . . . . . 9  |-  ( y  =  A  ->  ( E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z  <->  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z
) )
5150notbid 308 . . . . . . . 8  |-  ( y  =  A  ->  ( -.  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z 
<->  -.  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z ) )
5247, 51anbi12d 747 . . . . . . 7  |-  ( y  =  A  ->  (
( A  =  U. y  /\  -.  E. z  e.  ( ~P y  i^i 
Fin ) A  = 
U. z )  <->  ( A  =  U. A  /\  -.  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z
) ) )
5352rspcev 3309 . . . . . 6  |-  ( ( A  e.  ~P suc  A  /\  ( A  = 
U. A  /\  -.  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z
) )  ->  E. y  e.  ~P  suc  A ( A  =  U. y  /\  -.  E. z  e.  ( ~P y  i^i 
Fin ) A  = 
U. z ) )
549, 45, 53mpanr12 721 . . . . 5  |-  ( A  e.  ~P suc  A  ->  E. y  e.  ~P  suc  A ( A  = 
U. y  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z
) )
55 rexanali 2998 . . . . 5  |-  ( E. y  e.  ~P  suc  A ( A  =  U. y  /\  -.  E. z  e.  ( ~P y  i^i 
Fin ) A  = 
U. z )  <->  -.  A. y  e.  ~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) )
5654, 55sylib 208 . . . 4  |-  ( A  e.  ~P suc  A  ->  -.  A. y  e. 
~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) )
573, 6, 563syl 18 . . 3  |-  ( suc 
A  e.  Top  ->  -. 
A. y  e.  ~P  suc  A ( A  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) A  = 
U. z ) )
58 imnan 438 . . 3  |-  ( ( suc  A  e.  Top  ->  -.  A. y  e. 
~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) )  <->  -.  ( suc  A  e.  Top  /\  A. y  e.  ~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) ) )
5957, 58mpbi 220 . 2  |-  -.  ( suc  A  e.  Top  /\  A. y  e.  ~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) )
60 ordunisuc 7032 . . . . 5  |-  ( Ord 
A  ->  U. suc  A  =  A )
617, 27, 60mp2b 10 . . . 4  |-  U. suc  A  =  A
6261eqcomi 2631 . . 3  |-  A  = 
U. suc  A
6362iscmp 21191 . 2  |-  ( suc 
A  e.  Comp  <->  ( suc  A  e.  Top  /\  A. y  e.  ~P  suc  A
( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) ) )
6459, 63mtbir 313 1  |-  -.  suc  A  e.  Comp
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   Fincfn 7955   Topctop 20698   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-cmp 21190
This theorem is referenced by:  limsucncmp  32445
  Copyright terms: Public domain W3C validator